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PARAMETRIC INFERENCE FOR MIXED MODELS DEFINED BY

STOCHASTIC DIFFERENTIAL EQUATIONS

Sophie Donnet1 and Adeline Samson2

Abstract. Non-linear mixed models defined by stochastic differential equations (SDEs) are consid-
ered: the parameters of the diffusion process are random variables and vary among the individuals.
A maximum likelihood estimation method based on the Stochastic Approximation EM algorithm, is
proposed. This estimation method uses the Euler-Maruyama approximation of the diffusion, achieved
using latent auxiliary data introduced to complete the diffusion process between each pair of measure-
ment instants. A tuned hybrid Gibbs algorithm based on conditional Brownian bridges simulations of
the unobserved process paths is included in this algorithm. The convergence is proved and the error
induced on the likelihood by the Euler-Maruyama approximation is bounded as a function of the step
size of the approximation. Results of a pharmacokinetic simulation study illustrate the accuracy of
this estimation method. The analysis of the Theophyllin real dataset illustrates the relevance of the
SDE approach relative to the deterministic approach.

Résumé. Nous considérons des modèles non-linéaires mixtes dont la fonction de régression est un
processus de diffusion : les paramètres du processus sont aléatoires et dépendent de l’individu. Une
méthode d’estimation par maximum de vraisemblance basée sur une version stochastique de l’algorithme
EM, est proposée pour ces modèles. Elle repose sur une approximation par la méthode d’Euler-
Maruyama du processus de diffusion, approximation obtenue en introduisant des temps auxiliaires
entre les instants de mesure. La convergence de cet algorithme est démontrée. L’erreur induite par
l’approximation d’Euler-Maruyama sur la fonction de vraisemblance est contrôlée en fonction du pas
du schéma d’approximation. Une étude sur données simulées à partir d’un modèle issu de la pharma-
cocinétique illustre la précision de la méthode d’estimation proposée. L’analyse du jeu de données réelles
de la Théophylline illustre la pertinence de l’approche par SDE par rapport à l’approche déterministe
(par ODE).

1991 Mathematics Subject Classification. 62M99, 62F10,62F15, 62M09, 62L20, 65C30,65C40, 62P10 .

27/02/2007.

Introduction

In the context of biology, experimental studies often consist in repeated measurements of a biological criteria
(drug concentration, viral concentration, hemodynamic response, etc) obtained from a population of subjects.
The statistical parametric approach commonly used to analyze this longitudinal data is through mixed models:
the same regression function is used for all the subjects, but the regression parameters differ between the
individuals. These models have the capacity to discriminate between the inter-subjects variability (the variance
of the individual regression parameters) and the residual variability.

In mixed models, the regression function describes a time-dependent dynamic process deriving from physical,
physiological or biological principles. These sophisticated modeling approaches involve the use of dynamic
systems based on ordinary differential equations (ODEs). For instance, in pharmacokinetics which consist in
the study of the drug evolution in an organism, the human body is assimilated to a set of compartments within
which the drug flows. As a consequence, the drug concentration evolution is described through dynamic systems

Keywords and phrases: Brownian bridge, Diffusion process, Euler-Maruyama approximation, Gibbs algorithm, Incomplete data
model, Maximum likelihood estimation, Non-linear mixed effects model, SAEM algorithm
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and the regression function is solution of an ODE. The estimation problem in the case where the ODE has no
analytical solution has already been solved in [17].

However, most of the time, the studied biological process is not fully understood or too complex to be modeled
deterministically. So, to account for time-dependent or serial correlated residual errors and to handle real life
variations in model parameters occurring over time, mixed models described by stochastic differential equations
(SDEs) have been introduced in the literature (see [32] or [43] for instance). These models are a natural
extension of the models defined by ODEs, allowing to take into account errors associated with misspecifications
and approximations in the dynamic system.

Hence, this paper deals with parameter estimation for a mixed model defined by a SDE:

yij = z(tij , φi) + εij ,

where yij is the observation of subject i = 1, . . . , I at time tij , j = 0, . . . , Ji and (εij)i,j is a sequence of
i.i.d Gaussian random variables of variance σ2, representing the measurement errors. The parameters φi are
independently distributed with a density depending on a parameter β. The regression function z is a realization
of a diffusion process defined as the solution of the SDE describing the observed dynamic process:

dz(t, φ) = F (z, t, φ)dt+ γdB(t),

driven by a Brownian motion {Bt, t0 ≤ t ≤ T}, a drift function F depending on the parameter φ and a
volatility coefficient γ. If the volatility coefficient γ is zero, the SDE is an ODE, the SDE model parameter φ
being obviously equivalent to the parameter of the corresponding ODE system, and therefore being interpreted
in the same way. In such models, three fundamentally different types of noise have to be distinguished: the inter-
subject variability, representing the variance of the individual parameters φi, the dynamic noise γ, reflecting the
real random fluctuations around the corresponding theoretical dynamic model, and the measurement noise σ
representing the uncorrelated part of the residual variability associated with assay, dosing and sampling errors,
for instance, in a biological context.

The main objective of this paper is to develop a maximum likelihood method to estimate the parameter vector
θ = (β, γ2, σ2) for these mixed models. This method will combine statistical tools developed for the estimation
of diffusion processes, and for the estimation of mixed models. We first recall some standard estimation methods
of diffusion processes, the estimation methods of mixed models being detailed thereafter.

The parametric estimation of a diffusion process is a key issue. Estimation of continuously observed diffusion
processes is widely studied (see for instance [29, 36]). Statistical inference of discretely observed diffusion
processes is a critical question. When the transition probability of the diffusion process is explicitly known,
Dacunha-Castelle and Florens-Zmirou [12] propose a consistent maximum likelihood estimator. However, this
transition density has generally no closed form and the estimation methods have to sidestep this difficulty.
A short summary of such estimation methods is provided below (see [36, 40] for complete reviews). Explicit
estimators based on the minimization of suitable contrasts are proposed by [11, 21] and [24] and results on
the asymptotical distribution of the estimators are given. Analytical methods include those of Bibby and
Sorensen [9], Sorensen [41] – using estimating functions –, Poulsen [35] – using a numerical solution of the
Kolmogorov equation – or Aı̈t-Sahalia [1] – based on an analytical non-Gaussian approximation of the likelihood
function. Other methods approximate the transition density via simulation. They consider the unobserved
paths as missing data and introduce a set of auxiliary latent data points between every pair of observations.
Along these auxiliary latent data points, the process can be finely sampled using the Gaussian Euler-Maruyama
approximation to evaluate the likelihood function via numerical integration as proposed by Pedersen [33] and
Elerian et al. [19], or to evaluate the posterior distribution in a Bayesian analysis again via numerical integration,
as discussed by Eraker [20] and Roberts and Stramer [37]. In this context and for both maximum likelihood and
Bayesian estimations, standard Markov Chain Monte-Carlo (MCMC) methods are used to sample the process
with the conditional distributions. However, the convergence rate of these estimation methods decreases with
the increase in number of latent data points. Different solutions are proposed to overcome this difficulty:
Eraker [20] suggests the sampling of only one element at a time, while Elerian et al. [19] propose to sample
block-wise with an importance sampling algorithm. Roberts and Stramer [37] take a slightly different approach
as they sample transformations of the diffusion process. To sidestep the Euler-Maruyama approximation, Beskos
et al. [7,8] develop an exact simulation method of the diffusion process, applicable even without any analytical
form of the transition density. This algorithm can be included in a Monte-Carlo procedure to approximate the
likelihood function for a classical estimation and in a Gibbs algorithm for a Bayesian inference. However, this
exact simulation method is only adapted for time-homogeneous SDEs, which is frequently not the case when
studying biological dynamical systems. Furthermore, even under the conditions defined by Beskos et al. [7, 8],
this exact method requires the inclusion of accept-reject algorithms, which are difficult to implement in the



TITLE WILL BE SET BY THE PUBLISHER 3

general case of non-linear SDEs and often require a large computational time. Therefore an Euler-Maruyama
approximation approach is considered in this paper.

The above-cited papers do not take into account the observation noise on the collected data. In the case
of continuously observed stochastic processes with additive noise, Dembo and Zeitouni propose an EM algo-
rithm [14]. The problem of the parameter estimation of discretely observed diffusion processes with additive
measurement noise is evoked in few papers and is not completely solved. In the particular case of linear SDEs,
the Kalman filter [38] or the EM algorithms [39] can be used. When the observed process is a Gaussian martin-
gale (and can be seen as an Hidden Markov model), Douc and Matias [18] or Gloter and Jacod [22,23] exhibit
estimators and study their theoretical properties. Unfortunately, these explicit forms of maximum likelihood
estimates are limited to the linear SDEs case. Furthermore, these methods are not adapted to the context of
mixed models where the parameters of the SDEs are random variables.

The theory for mixed models is widely developed for deterministic models (ODEs). For linear mixed models,
maximum likelihood estimation has been well studied [5, 34]. In this context, Ditlevsen et al [16] propose an
estimation method adapted to linear mixed model defined by linear SDES, but their example is restricted to
the case where the transition probability has explicit expression. For non-linear mixed models, the maximum
likelihood estimation is more complex: the likelihood cannot be expressed in a closed form because of the non-
linearity of the regression function in the individual random parameters. Several authors propose some widely
used likelihood approximation methods, such as linearization algorithms [5,30], Laplacian or Gaussian quadra-
ture algorithms [45]. However none of these algorithms based on likelihood approximation can be considered
as fully established theoretically. In this context, Overgaard et al. [32] and Tornoe et al. [43] have introduced
SDEs in non-linear mixed models, using an extended Kalman filter of the diffusion process, with linearization-
based estimation algorithm. The convergence of their algorithm is not proved. An alternative to linearization
or approximation of the likelihood is to consider the individual parameters as non-observed data. The EM
algorithm is then the most adapted tool to estimate incomplete data models. Because of the non-linearity
of the model, stochastic versions of the EM algorithm are proposed. Monte-Carlo EM (MCEM) algorithms
have been proposed, with a Monte-Carlo approximation of the E-step [10, 44], but these algorithms may have
computational problems, such as slow or even no convergence. As an alternative to address the computational
problem, Delyon et al. propose stochastic approximation versions of EM (SAEM) [13, 27]. Pointwise almost
sure convergence of the estimate sequence to a local maximum of the likelihood has been proved under general
conditions [13]. Kuhn and Lavielle [26] propose to combine the SAEM algorithm with a MCMC procedure
for the individual parameter simulation, which is not direct in the case of non-linear mixed models. To our
knowledge, these estimation methods are not yet extended to mixed models defined by SDEs.

Our main purpose is thus to propose an efficient algorithmic estimation method of the vector of parameters
θ together with theoretical convergence results. We consider an approximate statistical model, of which the
regression term is the Euler-Maruyama discretized approximate diffusion process of the SDE. The parameter
inference is then performed on this new model, using a stochastic version of the EM algorithm. Section 1
describes the setup of the problem which is considered in this paper, detailing the diffusion process and its
Euler-Maruyama approximation. The estimation algorithm is presented in Section 2. This section details a
tuned MCMC procedure supplying both theoretical and computational convergence properties. The error on
the estimation induced by the Euler-Maruyama scheme is quantified in Section 3. In Section 4, the estimation
algorithm is applied to a non-linear mixed effects model issued from pharmacokinetics. Section 5 concludes
with some discussion.

1. Data and Model

1.1. Mixed model defined by SDEs

Let y = (yij)i=1..I,j=0..Ji
denote the vector of the observations for subject i measured at time tij with

ti0 ≤ ti1 ≤ . . . ≤ tiJi
≤ T . Let the data y be described by the following statistical model M:

yij = z(tij , φi) + εij , 1 ≤ i ≤ I, 0 ≤ j ≤ Ji

φi ∼i.i.d. π(·, β),
εij ∼i.i.d N (0, σ2),

dz(t, φi) = F (z, t, φi) dt+ γdB(t) , (1)
z(t0, φi) = z0(φi),





(M)

where φi ∈ R
d is the individual parameter for subject i, randomly distributed with the density π, depending

on the parameter β ∈ R
p and ε = (εij)i=1..I,j=0..Ji

represents the measurement error, with a measurement
noise variance σ2. The regression term z(t, φi) for subject i is a realization of the diffusion process z : R −→ R
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defined by the equation (1), with B a one-dimensional Brownian motion, γ the volatility coefficient and the
function F : R × [t0, T ] × R

d −→ R a known measurable drift function, non-linearly depending on the non-
observed parameter φi. The initial condition z0 of this process is a deterministic known function of the random
parameter φi (this deterministic function can be a constant).

Our objective is to propose a maximum likelihood estimation method of the parameters vector θ, where
θ = (β, γ2, σ2) belongs to some open subset Θ of the Euclidean space R

p+2. As the I random parameters φi

and the I random trajectories z(t, φi) are not observed, this statistical problem can be viewed as an incomplete
data model. The observable vector y is thus consider as part of a so-called complete vector (y, z, φ).

Remark 1. • In Sections 1, 2 and 3, for notation conveniences, the observation times are assumed to be
the same for all subjects: tij = tj, for all j = 0, . . . , J and for all i = 1, . . . , I. All the developments pro-
posed in these sections can be obviously extended to the case of unbalanced design. This is especially the
case in Section 4, where the estimation algorithm is applied on a real dataset with different observation
times for all subjects.

• This work can be extended to a statistical model with a regression function being equal to g(z(t)), with
g a linear or non-linear function, i.e.

yij = g(z(tj , φi)) + εij , 1 ≤ i ≤ I, 0 ≤ j ≤ J .

However, for the simplicity’s sake, we only consider the case g(z(t, φ)) = z(t, φ) in this paper.
• The identifiability of this model is a complex problem which is beyond the scope of this paper. However,

for some simple examples, the parameters identifiability can be proved.

1.2. Diffusion model

The diffusion process, solution of SDE (1) is defined on a filtered probability space (O,F ,Ft,P). Statistical
inference makes sense only if the existence and uniqueness of a solution of the SDE (1) for all z(t0), φ and γ
is ensured. Sufficient conditions of existence and uniqueness are the following globally Lipschitz, linear growth
and boundedness conditions:

Assumption (A0):

(1) For all φ ∈ R
d, for all 0 < R < ∞, there exists 0 < KR < ∞ such that for all t0 ≤ t ≤ T , for all

x, x′ ∈ R with |x| ≤ R, |x′| ≤ R

|F (x, t, φ) − F (x′, t, φ)| ≤ KR|x− x′|.

(2) For all φ ∈ R
d, for all 0 < T <∞, there exists a constant 0 < CT <∞ such that for all t0 ≤ t ≤ T , for

all x ∈ R

|F (x, t, φ)| ≤ CT (1 + |x|).
(3) γ is a non null constant.

Under this assumption, for any t0 < t < T , the distribution of z(t) conditioned by the filtration Ft−

is absolutely continuous with respect to the Lebesgue measure on R (Ft− being the filtration generated by
{z(s), s < t}). This distribution is denoted pz|φ(·|φ; γ2) in the following. As a consequence, both y and (y, z, φ)
have density functions, denoted respectively py(y; θ) and py,z,φ(y, z, φ; θ) depending on the parameter θ.

1.3. Introduction of an approximate statistical model

For common SDEs, the diffusion density pz|φ has generally no closed form. Consequently neither the likelihood
of the observed data py(y; θ) nor the likelihood of the complete data py,z,φ(y, z, φ; θ) have analytical forms, which
further complicates the parameters estimation. To overcome this difficulty, an approximate statistical model,
based on the Euler-Maruyama approximation of the diffusion process is introduced.

1.3.1. Euler-Maruyama approximation of the diffusion process

The Euler-Maruyama scheme is one of the simplest discrete-time approximation of a diffusion process leading
to Gaussian approximations of the transition densities. If the time intervals between the observation instants
are too great to obtain a good approximation of the transition density, a natural approach is to introduce a
set of auxiliary latent data points between every pair of observations, as first proposed by Pedersen [33]. Let
t0 = τ0 < τ1 < . . . < τn < . . . < τN = tJ denote the deduced discretization of the time interval [t0, tJ ]. Let us
assume that, for all j = 0, . . . , J , there exists an integer nj verifying tj = τnj

, with n0 = 0 by definition. Let
(hn)1≤n≤N be the sequence of the step sizes defined as hn = τn − τn−1. Let h = max1≤n≤N hn be the maximal
step size.
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Then the diffusion process denoted w and supplied by the Euler-Maruyama approximation of the SDE is
described by the following iterative scheme: for a fixed φi, w0(φi) = z0(φi), and for n = 1 . . . N ,

hn = τn − τn−1 ,

wi,n = wi,n−1 + hn F (wi,n−1, τn−1, φi) + γ
√
hn ξn , (2)

ξn ∼i.i.d N (0, 1).

where wi,n denotes the realization of the process at time τn for the parameter φi. Consequently, (wi,n0
, . . . , wi,nJ

)
is an approximation of the original diffusion process at observations instants (z(t0, φi), . . . , z(tJ , φi)). In the
following, let wi = (wi,n)n=0···N denote a realization vector of the process at the discrete times (τn)n=0···N .

1.3.2. Approximate statistical model

Using this approximation of the diffusion process provided by the Euler-Maruyama scheme of step size h, an
approximate statistical model denoted model Mh is defined as:

yij = wi,nj
+ εij , 1 ≤ i ≤ I, 0 ≤ j ≤ J ,

φi ∼i.i.d π(·;β) ,
εij ∼i.i.d N (0, σ2) ,

w0(φi) = z0(φi),
hn = τn − τn−1 ,
wi,n = wi,n−1 + hn F (wi,n−1, τn−1, φi) + γ

√
hn ξn , 1 ≤ n ≤ N,

ξn ∼i.i.d N (0, 1) ,





(Mh)

where wi,nj
= w(tj , φi) is a realization of the Euler-Maruyama approximated diffusion process defined in (2).

On this model Mh, y results from the partial observation of the complete data (y, w, φ) with w = (wi)i=1,...,I .

Remark 2. In this data augmentation framework, the choice of the discretization grid (τn)0≤n≤N is a central
issue to guarantee the fast convergence of the estimation algorithms. Indeed, on the one hand, a small step
size h ensures a fine Gaussian diffusion approximation. However, on the other hand, it increases the volume of
missing data (w, φ), which can lead to arbitrarily poor convergence properties of the algorithms when the missing
data volume widely exceeds the volume of actually observed data y. Furthermore, the time intervals between two
observations can be strongly different. Therefore, for practical purposes and to prevent unbalanced volumes of
missing data, we propose to adjust the step sizes for each single time interval.

In the following, the distributions referring to the model Mh are denoted q while those referring to the model
M are denoted p. On Mh, the observation vector y is distributed with density distribution qy(y; θ), which has
no closed form because of the SDE non-linearity with respect to φ. But by enriching the observed data with the
missing data, and by the Markov property of the diffusion process, the complete data likelihood is analytically
known:

qy,w,φ(y, w, φ; θ) =

I∏

i=1

[
qy|w(yi|wi;σ

2)

N∏

n=1

qw|φ(wi,n|wi,n−1, φi; γ
2) π(φi;β)

]

=
I∏

i=1

[
qy|w(yi|wi;σ

2)
N∏

n=1

d(wi,n; wi,n−1 + hn F (wi,n−1, τn−1, φi), γ
2hn) π(φi;β)

]
,

where d(.;m, v) denotes the Gaussian density with mean m and variance v. As a consequence, the estimation
of θ can be performed on the model Mh.

2. Maximum Likelihood Estimation on the model Mh

In this section, we propose a maximum likelihood estimation method, the vector of parameters θ being thus
estimated as the maximizing value of the likelihood qy(. ; θ).

2.1. Stochastic versions of the EM algorithm

The Expectation Maximization (EM) algorithm proposed by Demspter et al. [15] takes advantage of the
incomplete data model structure. We consider that the observed data y are the partial observations of the
complete data (y, x) with x the vector of the non-observed data. The EM algorithm is useful in situations
where the direct maximization of θ → qy(. ; θ) is more complex than the maximization of θ → Q(θ|θ′), with:

Q(θ|θ′) = Ex|y [log qy,x(y, x; θ)|y; θ′] .
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The EM algorithm is an iterative procedure: at the k-th iteration, the E-step is the evaluation of Qk(θ) =

Q(θ | θ̂k−1) while the M-step updates θ̂k−1 by maximizing Qk(θ). For cases where the E-step has no closed
form, Delyon et al. [13] propose the Stochastic Approximation EM algorithm (SAEM) replacing the E-step
by a stochastic approximation of Qk(θ). The E-step is thus divided into a simulation step (S-step) of the

non-observed data x(k) with the conditional distribution qx|y(. |y; θ̂k−1) and a stochastic approximation step
(SA-step):

Qk(θ) = Qk−1(θ) + αk

[
log
(
qy,x(y, x(k); θ̂k−1)

)
−Qk−1(θ)

]
,

where (αk)k∈N is a sequence of positive numbers decreasing to zero. One of the advantage of the SAEM algorithm
is the low-level dependence on the initialization θ0, due to the stochastic approximation of the E-step.

The distribution qx|y(.|y; θ̂k−1) is likely to be a complex distribution, as for the model Mh, resulting in the
impossibility of a direct simulation of the non-observed data x. For such cases, Kuhn and Lavielle [26] suggest
to realizethe simulation step via a MCMC scheme by constructing a Markov chain with an unique stationary

distribution qx|y(·|y; θ̂k−1) at the k-th iteration. They prove the convergence of the estimates sequence provided
by this SAEM algorithm towards a maximum of the likelihood under general conditions and in the case where
qy,x belongs to a regular curved exponential family.

2.2. Extension of the SAEM algorithm to the model Mh

In the particular case of the model Mh, the non-observed data vector is equal to x = (w, φ). The estimate

sequence obtained by the SAEM algorithm on the model Mh is denoted by (θ̂h,k)k≥0. As the simulation under
the conditional distribution qw,φ|y can not be performed directly, the SAEM algorithm combined with a MCMC
procedure is applied to the model Mh to estimate the model parameter θ. To ensure the convergence of the
SAEM algorithm, the model Mh is assumed to fulfill some regular conditions:

Assumption (A1):

(1) π(. ;β) is such that qy,w,φ belongs to the exponential family:

log qy,w,φ(y, w, φ; θ) = −ψ(θ) + 〈Sh(y, w, φ), ν(θ)〉 ,

where ψ and ν are two functions of θ, Sh(y, w, φ) is known as the minimal sufficient statistics of the

complete model, taking its value in a subset S̃ of R
m and 〈·, ·〉 is the scalar product on R

m.
(2) π(. ;β) fulfills standard regularity conditions such that assumptions (M2-M5) of [13] hold.

(3) β 7−→ π(φ;β) is of class Cm for all φ ∈ R
d, where m is the dimension of S̃.

Remark 3. Assumption (A1) is checked by a wide family of probability distributions π, such as Gaussian
distributions, etc.

Under the assumption (A1), the SA-step of the SAEM algorithm reduces to the approximation ofE [Sh(y, w, φ)|y; θ′].
Iteration 0 of the SAEM algorithm consists in the initialization of θh,0 and the approximation sh,0 of E [Sh(y, w, φ)|y; θh,0].
The k-th iteration of the SAEM algorithm is thus

• S-Step: a realization of the non-observed data (w(k), φ(k)) is generated through M iterations of a MCMC

procedure providing an uniformly ergodic Markov chain with qw,φ|y(·|y; θ̂h,k−1) as unique stationary
distribution,

• SA-Step: sh,k−1 is updated using the following stochastic approximation scheme:

sh,k = sh,k−1 + αk(Sh(y, w(k), φ(k)) − sh,k−1),

• M-Step: θ̂h,k−1 is updated to maximize the complete log-likelihood:

θ̂h,k = arg max
θ

(−ψ(θ) + 〈sh,k, ν(θ)〉) .

For example, the sufficient statistics corresponding to σ2 and γ2 are:

S
(1)
h (y, w, φ) =

1

I(J + 1)

I∑

i=1

J∑

j=0

(yij − wi,nj
)2,

S
(2)
h (y, w, φ) =

1

IN

I∑

i=1

N∑

n=1

(wi,n − hnF (wi,n−1, τn−1, φi))
2

hn

,
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the SA-step is

s
(1)
h,k = s

(1)
h,k−1 + αk(S

(1)
h (y, w(k), φ(k)) − s

(1)
h,k−1),

s
(2)
h,k = s

(2)
h,k−1 + αk(S

(2)
h (y, w(k), φ(k)) − s

(2)
h,k−1),

and the M-step for σ2 and γ2 at iteration k reduces to σ̂2
h,k = s

(1)
h,k and γ̂2

h,k = s
(2)
h,k. The sufficient statistics

for β depend on the distribution π(. ;β).

2.3. Convergence of the SAEM algorithm on the model Mh

Let denote Πθ the transition probability of the Markov chain generated by the MCMC algorithm. Following
[26], the convergence of the SAEM algorithm combined with MCMC is ensured under the following additional
assumption:

Assumption (A2):

(1) The chain (w(k), φ(k))k≥0 takes its values in a compact set E of R
N × R

d.
(2) For any compact subset V of Θ, there exists a real constant L such that for any (θ, θ′) in V 2

sup
{(w,φ),(w′,φ′)}∈E

|Πθ (w′, φ′|w, φ) − Πθ′ (w′, φ′|w, φ)| ≤ L‖θ − θ′‖Rp+2 .

(3) The transition probability Πθ supplies an uniformly ergodic chain whose invariant probability is the
conditional distribution qw,φ|y(· ; θ), i.e.

∃Kθ ∈ R
+, ∃ρθ ∈]0, 1[ | ∀k ∈ N ‖Πk

θ(·|w, φ) − qw,φ|y(·; θ)‖TV ≤ Kθρ
k
θ ,

where ‖ · ‖TV is the total variation norm. Furthermore,

K = sup
θ∈Θ

Kθ <∞ and ρ = sup
θ∈Θ

ρθ < 1.

(4) The function Sh is bounded on E .

A MCMC procedure fulfilling the assumption (A2-3) of uniform ergodicity for the Markov Chain generated by
Πθ is proposed in Section 2.4.

Theorem 1. Let assumptions (A0-A1-A2) hold. Let (αk) be a sequence of positive numbers decreasing to 0
such that for all k in N, αk ∈ [0, 1],

∑∞
k=1 αk = ∞ and

∑∞
k=1 α

2
k <∞.

Assuming the sequence (sh,k)k≥1 takes its values in a compact set, the sequence (θ̂h,k)k≥1 obtained by the
SAEM algorithm on the model Mh converges almost surely towards a (local) maximum θh,∞ of the likelihood
qy.

Proof: The convergence of the estimates towards a local maximum of the likelihood function qy is ensured
by the result of [26]. Indeed, assumption (A1-1) ensures the exponentiality of the model (assumption (M1)
of [26]). Assumption (A1-2) implies assumptions (M2-M5) of [26]. Assumption (SAEM1’) is verified by
the sequence (αk). Assumption (SAEM2) is due to assumption (A1-3). Finally, the required assumption
(SAEM3’) is resumed in assumption (A2).

Remark 4. If the compactness on (sh,k)k≥0 is not checked or difficult to check, the algorithm can be stabilized
using a projection of the stochastic approximation sequence on varying bounds proposed by Andrieu and Moulines
[2].

2.4. Simulation of the non-observed data using a MCMC procedure

At the k-th iteration of the SAEM algorithm, given an estimate θ̂h,k−1, a realization of the non-observed

data (w(k), φ(k)) is generated through the succession of M iterations of a MCMC procedure. MCMC procedures

construct a Markov chain with qw,φ|y(.|y ; θ̂h,k−1) as the invariant distribution, by proposing candidates (φc, wc)
with any proposal density Q. However, sampling all the missing data at the same time can lead to poor
convergence properties. Therefore, a hybrid Gibbs algorithm is implemented and realized successively M times,
the m-th iteration being written as:

(1) for i = 1, . . . , I, generation of φ
(m)
i , using a Metropolis-Hastings (M-H) procedure with Q1 as proposal

density and such that qφ|y,w(. |yi, w
(m−1)
i ; θ̂h,k−1) is the invariant distribution.
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(2) for i = 1, . . . , I, generation of w
(m)
i , using a M-H procedure with Q2 as proposal distribution and such

that qw|y,φ(. |yi, φ
(m)
i ; θ̂h,k−1) is the invariant distribution.

A careful choice of the proposal densities Q1 and Q2 will help the algorithm to quickly explore the parameters
space. In the following, some proposal densities of which efficiency is proved on numerical examples are detailed.

To simplify the notation, the parameter θ̂h,k−1 is omitted since this simulation is performed for a fixed θ̂h,k−1.

2.4.1. Proposal distributions

(1) Simulation of the candidate φc
i can be carried out with the prior density π which allows an efficient

exploration of the space of parameters. This leads to an independent M-H algorithm. An alternative

consists in generating a candidate in a neighborhood of φ
(m−1)
i , φc

i = φ
(m−1)
i + ηi with ηi ∼ N (0, δ)

and where δ is a scaling parameter on which the algorithm convergence depends. This results in the
so-called random-walk M-H algorithm (see for example [6]).

(2) A trajectory candidate wc
i can be generated using the Euler-Maruyama scheme which corresponds

to the prior distribution. An alternative to simulate wc
i consists in splitting the vector wi into two

parts (wi,n0
, · · · , wi,nJ

) and wi,aux, the former being the process observed at times (tj)j=0···J and the
latter being the process observed at the auxiliary latent times excluding the observation times. The

simulation of (wc
i,n0

, · · · , wc
i,nJ

) can be performed with random walk distributions: wc
i,nj

= w
(m−1)
i,nj

+ η′i
where η′i ∼ N (0, δ′) and δ′ is a scaling parameter chosen to ensure good convergence properties. As
proposed by Pedersen [33], the trajectory at the auxiliary times wc

i,aux can be generated using an
unconditioned distribution but it would have poor convergence properties. A more appropriate strategy
consists in generating a candidate wc

i,aux using Brownian bridges, conditioning the proposed bridge on
the events (wc

i,nj
)j=0···J , as suggested by Eraker [20] or Roberts and Stramer [37]. More precisely, for

nj−1 < n < nj , wi,τn
is simulated with:

wc
i,τn

= wc
i,nj−1

+
wc

i,nj
− wc

i,nj−1

tj − tj−1
(τn − tj−1) +Bτn

,

where B is a standard Brownian bridge on [0, 1] equal to zero for t = 0 and t = 1, which can be easily
simulated.

2.4.2. Uniform ergodicity of the MCMC procedure

In case of a cyclic combination, the uniform ergodicity of the Markov Chain is ensured if one of the proposal
distributions satisfies a minoration condition (Prop. 3 and 4 of [42]). However, by corollary 4 of [42], an
independent M-H algorithm verifies the minoration condition if the weight function qw,φ|y(w, φ|y)/R(w, φ) is
bounded, where R denotes the proposal distribution for the couple (w, φ). This is obviously the case when
R(w, φ) = qw,φ(w, φ). As a consequence, the Metropolis-Hastings algorithm proposed in part 2.4.1 fulfills the
conditions of uniform ergodicity required by the SAEM algorithm.

3. Survey of the error induced by the Euler-Maruyama approximation

The estimation method proposed in this paper generates two distinct types of errors on the parameters
estimate that have to be controlled.

The first type of error is induced by the estimation method itself. The estimation algorithm produces

a sequence (θ̂h,k)k≥0 of estimates which converges towards θh,∞, a (local) maximum of the Mh-likelihood
qy(y; ·) function. The limiting distribution of the estimate is a rather delicate issue, which is beyond the

scope of this paper. However the variance of this estimate θ̂h,k is classically controlled by the standard error
which is evaluated through the Fisher information matrix of the estimates. Kuhn and Lavielle [26] propose
to estimate this Fisher information matrix by using the stochastic approximation procedure and the Louis’
missing information principle [31]. This Fisher information matrix estimate can be adapted to the model Mh

for a fixed value of the step size h. At the k-th iteration of the SAEM algorithm, the three following quantities
are evaluated:

∆k = ∆k−1 + αk

[
∂θ log qy,w,φ(y, w(k), φ(k); θ̂h,k) − ∆k−1

]
(3)

Gk = Gk−1 + αk

[
∂2

θ log qy,w,φ(y, w(k), φ(k); θ̂h,k)+

∂θ log qy,w,φ(y, w(k), φ(k); θ̂h,k) ∂θ log qy,w,φ(y, w(k), φ(k); θ̂h,k)t −Gk−1

]
(4)

Hk = ∆k∆t
k −Gk (5)
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As the sequence (θ̂h,k)k≥0 converges to the maximum of the likelihood, the sequence (Hk)k≥0 converges to the
observed Fisher information matrix. The diagonal elements of the inverse of this matrix provide estimates of

the variance of θ̂h,k.

A second type of error is induced on the estimate by the Euler-Maruyama scheme. Indeed, for the reasons
evoked in Section 1, the SAEM algorithm is applied to the model Mh instead of to the model M: the algorithm
maximizes the Mh-likelihood function qy instead of the M-likelihood function py.

The aim of this section is to study this second type of error induced by the Euler-Maruyama scheme on
the conditional distribution qw,φ|y and on the likelihood function qy. In Theorem 2, we propose bounds of this
error as a function of the maximal step size of the Euler-Maruyama scheme h. In the following, an additional
assumption holds:

Assumption (A3):
The function F : R × [t0, T ] × R

d −→ R is infinitely differentiable in the variable space and its partial
derivatives of any order are uniformly bounded with respect to x and φ.

Theorem 2. Let the assumptions (A0-A3) hold.

(1) Let z and w be the diffusion processes of the models M and Mh respectively, at the observation times:
z = (z(t0), · · · , z(tJ )) and w = (w(t0), · · · , w(tJ )). Let pz,φ|y and qw,φ|y be the conditional distributions
on the models M and Mh respectively. There exists a non-negative constant C(y) dependent of y and
a non-negative constant H0, such that, for any 0 < h < H0,

∥∥pz,φ|y − qw,φ|y

∥∥
TV

≤ C(y)h,

where ‖·‖TV denotes the total variation distance.
(2) Let py and qy be the likelihoods of the models M and Mh respectively. There exists a non-negative

constant C2(y) dependent of y and independent of θ, such that for all 0 < h < H0,

sup
{θ=(β,γ2,σ2),γ2

0
<γ2<Γ2

0
}

|py(y; θ) − qy(y; θ)| ≤ C2(y)h.

Theorem 2 is proved in Appendix A. These results are based on the convergence rate of the transition
densities proposed by Bally and Talay [4].

As a principal consequence of part (2) of this theorem, and assuming regularity hypotheses on the Hessians
of the likelihoods of both models M and Mh, the bias of the estimates induced by both the numerical approx-
imation and the estimation algorithm, is controlled. More precisely, let introduce an additional assumption:
Assumption (A4):

(1) The likelihood functions py(y; θ) and qy(y; θ) are twice differentiable.
(2) Let θ∞ and θh,∞ be the maxima of functions py(y; θ) and qy(y; θ) respectively. There exist two non-

negative constants ε1 and ε2 such that for every θ ∈ {θh,∞ + t(θh,∞ − θ∞), t ∈ [0, 1]}, and for every
x ∈ R

p+2

−xtHpy
(θ)x ≥ ε1 ‖x‖2

−xtHqy
(θ)x ≥ ε2 ‖x‖2

,

where Hpy
and Hqy

are the Hermitian matrices of py(y; ·) and qy(y; ·) respectively.

Corollaire 1. Let assumptions (A0-A4) and the assumptions of Theorem 1 hold. Let θ∞ and θh,∞ be the

likelihood maxima of models M and Mh respectively. Let (θ̂h,k)k≥1 be the sequence of estimates obtained by the

SAEM algorithm on the Mh model. Therefore, (θ̂h,k)k≥1 converges almost surely towards θh,∞ and there exists
a non-negative constant M , independent of θ such that

‖θh,∞ − θ∞‖2 ≤Mh.

Corollary 1 is proved in Appendix A.

4. Theophyllin pharmacokinetic example

The estimation method developed in Section 2 is applied below to a pharmacokinetics example.
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4.1. Pharmacokinetics

Pharmacokinetics (PK) studies the time course of drug substances in the organism. This can be described
through dynamic systems, the human body being assimilated to a set of compartments within which the drug
evolves with time. In general, these systems are considered in their deterministic version. However, in a
recent book on PK modeling, Krishna [25] claims that the fluctuations around the theoretical pharmacokinetic
dynamic model may be appropriately modeled by using SDEs rather than ODEs. Overgaard et al. [32] suggest
the introduction of SDEs to consider serial correlated residual errors due for example to erroneous dosing,
sampling history or structural model misspecification.

In the PK context, non-linear mixed-effects models are classically considered with a Gaussian distribution for
the individual parameters: φi ∼ N (µ,Ω), for i = 1, . . . , I. The assumption (A1) is fulfilled for this particular
choice of distribution π(. : β). In this case, the parameter β to estimate is β = (µ,Ω). In the following, the
hypothesis “tij = tj for all i”, is not assumed and the observation times tij may differ between subjects.

In a deterministic approach, the regression function z is defined as the solution of a PK ordinary differential
system: dz(t)/dt = F (z(t), t, φ) with z(t0) = Z0, each component of the vector φ having a PK meaning. For
example, a classic one compartment PK model with first order absorption and first order elimination is described
by the following dynamic equation: z0 = 0 and

dz(t, φ)

dt
=
Dose ·KaKe

Cl
e−Kat −Kez(t, φ), (6)

where z represents the drug concentration in blood, Dose is the known drug oral dose received by the subject,
Ke is the elimination rate constant, Ka is the absorption rate constant and Cl is the clearance of the drug. A
stochastic differential system can be deduced from this ODE:

dz(t, φ) =

(
Dose ·KaKe

Cl
e−Kat −Kez(t, φ)

)
dt+ γdBt, (7)

where Bt is a Brownian motion and γ is the volatility coefficient of the SDE. This SDE fulfills assumptions
(A0) and (A3).

This SDE is linear and the law of the diffusion Z is analytically known. However, this diffusion is non-
linear with respect to the individual parameter φi. Consequently, the likelihood of the corresponding non-linear
mixed model has no analytical form and estimation methods such as the SAEM algorithm combined with
MCMC schemes are needed. In practice, the assumption (A2-1) is always fulfilled as simulation of diffusions
or individual parameters is always realized in a compact set.

4.2. Simulation study

The aim of this simulation study is to illustrate the accuracy (bias and root mean square errors) of the
extended SAEM algorithm developed in Section 2 on a PK application.

We use the previous PK model to mimic the Theophyllin drug pharmacokinetic. The design of simulation
is I = 36 subjects and nine blood samples per patient (J = 8), taken at 15 minutes, 30 minutes, 1, 2,
3.5, 5, 7, 9, 12 hours after dosing. The drug oral dose (Dose) received by the subject is chosen arbitrarily
between 3 and 6 mg. To prevent the parameters from taking unrealistic negative values, the vector φ ∈ R

3

is classically composed of the log parameters φ = (log(Ke), log(Ka), log(Cl)). The individual parameters
(φi)i=1,...,I are thus simulated with Gaussian distributions N (µ,Ω), with µ equal to (−2.52, 0.40,−3.22) as
proposed by [34]. A diagonal variance-covariance matrix Ω is assumed for the Gaussian distribution of φ. Let
ω2 = (ω2

1 , ω
2
2 , ω

2
3) denote the vector of these variances. The inter-subject variability is set equal for the three

parameters: ω2
1 = ω2

2 = ω2
3 = 0.01. We set a volatility coefficient equal to γ2 = 0.2 and an additive Gaussian

measurement error σ2 = 0.1. We generate 100 datasets with this protocol. To evaluate the accuracy of the
estimates of θ = (µ, ω2, γ2, σ2) produced by the SAEM algorithm, the estimation of the parameters is performed
on the 100 datasets, simulated by the previous protocol, using the extension of the SAEM algorithm presented
in Section 2.2.

The Euler-Maruyama scheme included in the SAEM algorithm is implemented on a grid with auxiliary latent
data points introduced between each pair of observation instants as detailed in Section 1.3.1. The number of
auxiliary points has to be chosen carefully because a volume of missing data too large can induce arbitrarily
poor convergence properties of the Gibbs algorithm. In this example, we divide each time interval [ti,j , ti,j+1]
into 20 sub-intervals of equal length. This choice supplies a reasonable volume of missing data with respect to
the volume of observed data, avoids unbalance between the observation-time intervals and proves its numerical
efficiency in accurately approximating the solution of the SDE.
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Figure 1. Evolution of the SAEM parameter estimates function of the iteration number in a
logarithmic scale

The implementation of the Gibbs procedure included in the SAEM algorithm requires subtle tuning in
practice. In particular, the simulation of the diffusion process w on the auxiliary grid is highly critical. An un-
conditioned trajectory simulation with q(wi,nj

|wi,nj−1
; θ) as proposed by Pedersen [33] provides poor numerical

results in the case of this example. Indeed, a great number of these simulated trajectories produce large jumps
(wi,τnj

−wi,τnj
−1). The probability of such trajectories being close to zero, it induces too low an acceptance rate.

As suggested by Eraker [20] or Roberts and Stramer [37] and detailed in Section 2.4, a conditioned trajectory
simulation through Brownian bridge distributions is preferred. Moreover, we update the missing trajectories at
once for each subject, as recommended by Elerian et al. [19] to avoid a high level of rejection. In this example,
we obtain acceptance rates in the neighborhood of 25%.

The implementation of the SAEM algorithm requires initial value θ0 and the choice of the stochastic ap-
proximation sequence (αk)k≥0. The initial values of the parameters are chosen arbitrarily and set to θ0 =
(−3, 1,−3, 0.1, 0.1, 0.1, 2, 1), the convergence of the SAEM algorithm few depending on the initialization. The
step of the stochastic approximation scheme is chosen as recommended by Kuhn and Lavielle [27]: αk = 1
during the first iterations 1 ≤ k ≤ K1, and αk = (k − K1)

−1 during the subsequent iterations. Indeed, the
initial guess θ0 might be far from the maximum likelihood value and the first iterations with αk = 1 allow
the sequence of estimates to converge to a neighborhood of the maximum likelihood estimate. Subsequently,
smaller step sizes during K −K1 additional iterations ensure the almost sure convergence of the algorithm to
the maximum likelihood estimate. We implement the extended SAEM algorithm with K1 = 200 and K = 500
iterations. Figure 1 illustrates the convergence of the parameter estimates provided by the extended SAEM
algorithm as a function of the iteration number in a logarithmic scale. During the first iterations of SAEM,
the parameter estimates fluctuate, reflecting the Markov chain construction. After 200 iterations, the curves
smooth out but still continue to converge towards a neighborhood of the likelihood maximum. Convergence is
obtained after 500 iterations.

Let denote θ̂r the estimate of θ obtained on the rth simulated dataset, for r = 1, . . . , 100. The relative

bias 1
100

∑
r

(bθr−θ)
θ

and relative root mean square error (RMSE)

√
1

100

∑
r

(bθr−θ)2

θ2 for each component of θ are
computed and presented in Table 1.
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Table 1. Relative bias (%) and relative root mean square error (RMSE) (%) of the estimated
parameters evaluated by the SAEM algorithm from 100 simulated trials with I = 36 subjects.

Parameters Bias (%) RMSE (%)
log Ke 0.42 -3.19
log Ka 4.14 8.95
log Cl -0.23 -2.27
ω2

1 3.83 40.03
ω2

2 8.49 36.76
ω2

3 -8.81 37.52
γ2 13.02 21.31
σ2 -4.44 18.79

The estimates of the mean parameter µ have very low bias (<5%). The variance parameters have small bias
(<9%) except γ2, this variance parameter being slightly over-estimated (13%). The RMSE are very satisfactory
for the mean parameter (<9%). The RMSE for the variance parameters are greater but still satisfactory (≤40%)
in comparison to the small number of subjects (I = 36). The RMSE of σ2 is particularly satisfactory (<20%)
considering the complexity of the variability model.

In conclusion, even if this simulation study is performed on a complex model, the convergence of the extended
SAEM algorithm towards the maximum likelihood neighborhood is computationally efficient. In addition de-
spite the fact that the number of subjects is small, the extended SAEM algorithm all in all supplies accurate
estimations of the parameters. Furthermore, the accuracy is comparable to that obtained with the classic SAEM
algorithm for an ODE version of a mixed model i.e. for a model with one less variability level.

4.3. A real data example

The extended SAEM algorithm is used to estimate the PK parameters of the Theophyllin drug PK real
dataset. This new analysis of the Theophyllin dataset aims at illustrating the advantage of the SDE approach
over the ODE approach.

In this clinical trial, twelve subjects received a single oral dose of 3 to 6 mg of Theophyllin. Ten blood samples
were taken around 15 minutes, 30 minutes, 1, 2, 3.5, 5, 7, 9, 12 and 24 hours after dosing. The individual data
are displayed in Figure 2. The Theophyllin PK is classically described by the one compartment model with
first order absorption and first order elimination presented previously. We fit the Theophyllin data with the
regression term successively defined as the solution (6) and then as that of the SDE (7).

In the ODE approach, the differential equation (6) has an explicit solution. Thus, the parameters estimates
are obtained using the SAEM algorithm combined with a MCMC procedure proposed by Kuhn and Lavielle [26].

The individual concentration profiles are predicted by ẑij = z(tij , φ̂i) for all i and j where z is the solution of

(6) and φ̂i is an estimation of the posterior mean E(φi|yi; θ̂) evaluated during the last iterations of the SAEM
algorithm.

In the SDE approach, the same implementation of the extended SAEM algorithm as the one detailed for the
simulation study (i.e. with an Euler-Maruyama approximation of the SDE) is used. The individual concentra-

tion predictions E(w(tij , φi)|yi; θ̂) for all i and j are evaluated by ŵij = 1/100
∑K

k=K−99 w
(k)(tij , φ

(k)
i ) where

(w(k)(tij , φ
(k)
i ))k=K−99,...,K are simulated under the conditional distribution qw,φ|y( . |yi; θ̂) during the 100 last

iterations of the extended SAEM algorithm.
However, as the differential equation (7) is linear, an exact simulation of the diffusion process z can also be per-

formed and be combined with the SAEM algorithm. The individual concentration predictions E(z(tij , φi)|yi; θ̂)

for all i and j are evaluated by ẑij = 1/100
∑K

k=K−99 z
(k)(tij , φ

(k)
i ) where (z(k)(tij , φ

(k)
i ))k=K−99,...,K are sim-

ulated under the conditional distribution pz,φ|y( . |yi; θ̂) during the 100 last iterations of the extended SAEM
algorithm. As a consequence, on this particular example, the influence of the Euler approximation on the
predictions can be estimated.

The SAEM algorithm is implemented with 500 iterations for the 3 models. The step size for the Euler-
Maruyama approximation is such that 100 latent points are introduced between each pair of observations
instants. The step size h is decreased from the simulation study in order to assure the approximate model Mh

to be close to the model M.
The ODE and the two SDE predictions are overlaid on the data in Figure 3 for four typical subjects. Both

ODE and SDE predicted curves for the other eight subjects are satisfactory and thus not presented here.
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Figure 2. Individual concentrations for the pharmacokinetics of Theophyllin for 12 subjects.

First, the results obtained by the Euler-Maruyama approximation and the exact simulation based approaches
illustrate the control of the error induced by the Euler-Maruyama approximation (result of Theorem 2), as the
two predicted curves are almost always very closed. Moreover this graph illustrates that this error is insignificant
in comparison of the contribution of the SDE approach. Secondly, for the subject 3, the ODE predicted curve
is satisfactory as well as the two SDE predicted curves. For the subjects 1, 2 and 12, the ODE predicted curves
miss some of the observed data, particularly the elimination phase of the drug. The SDE predicted curves
improve all of these individual profiles, especially the elimination phase.

With the ODE approach, the variabilities are estimated as ω1 = 0.003, ω2 = 0.653, ω3 = 0.167, σ = 0.709.
With the SDE approach, the variabilities are estimated as ω1 = 0.001, ω2 = 0.639, ω3 = 0.001, σ = 0.466
and γ = 0.780. Thus, the first two variabilities remain almost unchanged by the SDE approach whereas, as
expected, σ is lower in the SDE approach than in the ODE approach. As a consequence, we observe a new
decomposition of the various sources of variabilities of the data, which distinguishes the variability due to real
fluctuations around the theoretical model (γ) from the residual variability (σ).

5. Discussion

This paper proposes a maximum likelihood estimation method for mixed effects models defined by a discretely
observed diffusion process including additive measurement noise. To that end, an approximate model Mh is
introduced, of which the regression term is evaluated using a Gaussian Euler-Maruyama approximation of
maximal step size h. The SAEM algorithm, extended to this model, requires the simulation of the missing data
(w, φ) with the conditional distribution qw,φ|y. The choice of the proposal distributions governs the convergence
properties of the algorithm and thus is a key issue. A tuned MCMC procedure to perform this simulation is thus
proposed, combining a hybrid Gibbs algorithm with independent or random walk Metropolis-Hastings schemes.

Moreover, we prove that the error induced by the Euler-Maruyama Gaussian approximation on the conditional
distributions and the likelihoods decreases linearly when the step size h goes to zero. These results are proved
under strong assumptions that could be probably be weakened.

When the step size h decreases and the number of auxiliary latent times increases, the simulation of the
diffusion process becomes more difficult. Therefore, a trade-off between a small discretisation error and a small
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Figure 3. Individual concentration curves for subject 1, 2, 3 and 12, predicted by SAEM with
the ODE approach (dotted line), the SDE approach based on the Euler-Maruyama approxima-
tion (plain line) and the SDE approach based on an exact simulation of the diffusion (dashed
line) are overlaid on the data points for the pharmacokinetic of Theophyllin.

simulation variance has to be found. An extension of this work would be a theoretical result to find this trade-off.
As this result is beyond the scope of this paper, we used in the examples empirical trade-offs.

The discretisation error is distinct from the error on the estimates induced by the estimation algorithms, which
is classically evaluated through the Fisher information matrix. This Fisher information matrix is estimated by
stochastic approximation using the Louis’ missing information principle [31]. This matrix provides standard
errors of the estimates. The limiting distribution of the estimates has been described by Delyon et al. [13] for
an averaged SAEM procedure. However this result can not be applied when the SAEM algorithm is combined
with a MCMC algorithm because, the random noise in the stochastic approximation scheme is not anymore
a martingale increment. In the case of SAEM-MCMC algorithm, the limiting distribution of the estimates is
difficult to derive and this problem is beyond the scope of this paper.

The stochastic version of the EM algorithm SAEM proposed by Kuhn and Lavielle [26] is preferred to the
Monte-Carlo EM (MCEM) developed by Wei and Tanner [44] because of its computational properties. Indeed,
SAEM requires the generation of only one realization of the non-observed data at each iteration. In a context
where the missing data have to be simulated by a MCMC method, decreasing the size of these missing data is
a key issue to ensure acceptable computational times.

The accuracy of the extended SAEM algorithm is illustrated on a pharmacokinetic simulation study. The
parameters are estimated with small bias and the mean square error are satisfactory given the complexity of the
model. The relevance of the SDEs approach with respect to the deterministic one is exemplified on a real dataset
based on a linear SDE. The comparison between the exact simulation of the SDE and the Euler-Maruyama
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approximation illustrates the accuracy of the discretisation approach. Therefore, this example justifies the use
of this discretisation approach for the parameter estimation of more general models without explicit solution.

The same work can be carried out in a full Bayesian framework. In that context, a prior distribution is
specified on the parameters θ and a tuned hybrid Gibbs sampling algorithm has to be developed to estimate
the posterior distribution pθ|y(·|y). As before, the algorithms are performed on an approximate model defined
by the Euler-Maruyama scheme, and the instrumental distributions proposed in this paper can be included
in the Gibbs sampling algorithm. The ergodicity of the Markov chain generated by the MCMC algorithm on
the approximate model can be proved under general assumptions. Furthermore, the errors induced by the
introduction of the Euler-Maruryama scheme on the posterior distribution and on the posterior mean decrease
linearly when the step size h of the numerical scheme goes to zero. The proofs of these results are almost the
same as the ones given in this paper.
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Appendix A. Proof of theorem 2

A.1. Proof of part 1

We aim at bounding the total variation distance between pz,φ|y and qw,φ|y as a function of the step size h.
pz,φ|y and qw,φ|y denote the joint posterior distributions of the diffusion and the individual parameters under
models M and Mh respectively, (the quantity h is implicitly included in the notation qw,φ|y). The following
notations are used: yi is the vector of data of subject i at times t0, . . . , tJ , xi is a process trajectory of subject
i observed at times t0, . . . , tJ , i.e. xi = (xi,0, . . . xi,J), ∀i = 1 . . . I where xi,j is the observation for the subject i
at time tj .

Let us first decompose the quantity
∥∥pz,φ|y − qw,φ|y

∥∥
TV

. Using the fact that the subjects i = 1 . . . I are
independent, we can write:

∥∥pz,φ|y − qw,φ|y

∥∥
TV

=

∫ ∣∣∣∣∣

I∏

i=1

pz,φ|y(xi, φi|yi; θ) −
I∏

i=1

qw,φ|y(xi, φi|yi; θ)

∣∣∣∣∣ dx1 . . . dxIdφ1 . . . dφI

≤
∫ I∑

i=1

∣∣pz,φ|y(xi, φi|yi; θ) − qw,φ|y(xi, φi|yi; θ)
∣∣

i−1∏

l=1

pz,φ|y(xl, φl|yl; θ)

I∏

l=i+1

qw,φ|y(xl, φl|yl; θ)

dx1 . . . dxIdφ1 . . . dφI . (8)

We aim to bound every term of the sum of (8). The joint posterior distributions can be expressed as a function
of the transition probabilities. A a consequence, the sketch of the proof is the following one:

(1) first, we propose two lemma (based on results of [28] and [3]) which supply bounds for the quantities
pz|φ

(
xi,j |xi,j−1, φi; γ

2
)

and |qw|φ

(
xi,j |xi,j−1, φi; γ

2
)
− pz|φ

(
xi,j |xi,j−1, φi; γ

2
)
|,

(2) then, we bound the quantities
∣∣pz,φ|y(xi, φi|yi; θ) − qw,φ|y(xi, φi|yi; θ)

∣∣ and qw,φ|y(xl, φl|yl; θ) using the
two previous lemma,

(3) in a third part, qw,φ|y(xl, φl|yl; θ) is upper-bounded,
(4) at last, the total variation distance between pz,φ|y and qw,φ|y is proved to be equivalent to O(h).

(1) We first recall the result deriving from [28] and [3] which supplies bounds for the quantity pz|φ

(
xi,j |xi,j−1, φi; γ

2
)

independent of h.



TITLE WILL BE SET BY THE PUBLISHER 17

Lemma 1. There exists a non-negative constant C1,J independent of φi and γ2, such that ∀i = 1 . . . I,
∀j = 1 . . . J ,

pz|φ

(
xi,j |xi,j−1, φi; γ

2
)
≤ C1,J . (9)

Proof: Following [28], there exists a non-negative constant C1(φi, γ
2, tj − tj−1) such that, ∀i = 1 . . . I,

∀j = 1 . . . J , pz|φ

(
xi,j |xi,j−1, φi; γ

2
)
≤ C1(φi, γ

2, tj − tj−1). This constant C1(φi, γ
2, tj − tj−1) depends

on the volatility function and on the bounds of the derivatives of the drift and volatility functions, which
are independent of φi under assumption (A3). As a consequence, assuming that γ2 is contained in a
compact [γ0,Γ0], there exists a constant C1(tj − tj−1) independent of γ2 and φi such that, ∀i = 1 . . . I,
∀j = 1 . . . J , pz|φ

(
xi,j |xi,j−1, φi; γ

2
)
≤ C1(tj − tj−1). Finally, ∀i = 1 . . . I, ∀j = 1 . . . J ,

pz|φ

(
xi,j |xi,j−1, φi; γ

2
)
≤ max

j=1...J
C1(tj − tj−1) := C1,J .

Remark 5. If the time interval lengths (tj − tj−1)j=1...J are independent of J , which is the case in
practice, C1,J is independent of J .

We can obtain the same type of result for the quantity |qw|φ

(
xi,j |xi,j−1, φi; γ

2
)
−pz|φ

(
xi,j |xi,j−1, φi; γ

2
)
|.

Lemma 2. There exists a non-negative constant C2,J independent of φi and γ2, such that ∀i = 1 . . . I,
∀j = 1 . . . J ,

|qw|φ

(
xi,j |xi,j−1, φi; γ

2
)
− pz|φ

(
xi,j |xi,j−1, φi; γ

2
)
| ≤ C2,Jh. (10)

Proof: Bally & Talay propose a bound for these quantities in [3]. More precisely, using the assumption
(A3) and the fact that the volatility function is constant (thus the Hörmander’s condition detailed in [3]
is verified), for each subject i, there exists a non-negative constant C2(φi, γ

2, tj − tj−1) independent of
h, xi,j and xi,j−1 such that |qw|φ

(
xi,j |xi,j−1, φi; γ

2
)
− pz|φ

(
xi,j |xi,j−1, φi; γ

2
)
| ≤ C2(φi, γ

2, tj − tj−1)h.
With the same arguments as those used in lemma 1, there exists a constant C2,J independent of φi and
γ2 bounding C2(φi, γ

2, tj − tj−1) for all φi and γ2 ∈ [γ0,Γ0].

(2) To bound the quantities
∣∣pz,φ|y(xi, φi|yi; θ) − qw,φ|y(xi, φi|yi; θ)

∣∣ of (8), we first apply the Bayes formula
to obtain

∣∣pz,φ|y(xi, φi|yi; θ) − qw,φ|y(xi, φi|yi; θ)
∣∣ ≤

py|z(xi;σ
2)π(φi;β)

py(yi; θ)



∣∣pz|φ(xi|φi; γ

2) − qw|φ(xi|φi; γ
2)
∣∣

︸ ︷︷ ︸
bi

+

ai︷ ︸︸ ︷
qw|φ(xi|φi; γ

2)

qy(yi; θ)︸ ︷︷ ︸
di

|py(yi; θ) − qy(yi; θ)|︸ ︷︷ ︸
ci


 , (11)

using the fact that the conditional distributions py|z(yi|xi;σ
2) and qy|w(yi|xi;σ

2) are equal. Now, we
bound the quantities ai, bi, ci and finally di.

• To bound ai, we write:

ai = qw|φ(xi|φi; γ
2) =

J∏

j=1

qw|φ

(
xi,j |xi,j−1, φi; γ

2
)

(by the Markov property)

≤
J∏

j=1

[
|qw|φ

(
xi,j |xi,j−1, φi; γ

2
)
− pz|φ

(
xi,j |xi,j−1, φi; γ

2
)
| + pz|φ

(
xi,j |xi,j−1, φi; γ

2
)]

≤ (C1,J + C2,Jh)
J (by lemma (1) and (2)) (12)
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• To bound bi, we first use the Markov property to write:

bi =
∣∣pz|φ(xi|φi; γ

2) − qw|φ(xi|φi; γ
2)
∣∣

=

∣∣∣∣∣∣

J∏

j=1

pz|φ

(
xi,j |xi,j−1, φi; γ

2
)
−

J∏

j=1

qw|φ

(
xi,j |xi,j−1, φi; γ

2
)
∣∣∣∣∣∣

≤
J∑

j=1

∣∣pz|φ

(
xi,j |xi,j−1, φi; γ

2
)
− qw|φ

(
xi,j |xi,j−1, φi; γ

2
)∣∣

j−1∏

k=1

pz|φ

(
xi,k|xi,k−1, φi; γ

2
) J∏

k=j+1

qw|φ

(
xi,k|xi,k−1, φi; γ

2
)
. (13)

Then, using the lemma (1) and (2), inequality (13) becomes:

bi ≤
J∑

j=1

C2,Jh

j−1∏

k=1

C1,J

J∏

k=j+1

(C1,J + C2,Jh) =: C3,Jh. (14)

Like the constants C1,J and C2,J , the constant C3,J is independent of φi and γ2.
• To bound ci, using the inequality (14), we have:

ci = |py(yi; θ) − qy(yi; θ)|

≤
∫ ∫

py|z(xi;σ
2)
∣∣pz|φ(xi|φi; γ

2) − qw|φ(xi|φi; γ
2)
∣∣

︸ ︷︷ ︸
bi

π(φi;β)dxidφi

≤ C3,Jh

∫ ∫
py|z(xi;σ

2)π(φi;β)dxidφi = C3,Jh. (15)

• The quantity di = qy(yi; θ) can be bounded from below. Indeed,

qy(yi; θ) ≥ py(yi; θ) − |py(yi; θ) − qy(yi; θ)|︸ ︷︷ ︸
ci

≥ py(yi; θ) − C3,Jh by the inequality (15)

≥ py(yi; θ) − C3,JH0 with h < H0.

At last, let C5,y denote mini=1...I(py(yi; θ)) − C3,JH0. For H0 small enough, C5,y is non-negative
and we have

di = qy(yi; θ) ≥ C5,y > 0. (16)

• Finally, by inequations (12), (14), (15) and (16) we are able to upper-bound the inequation (11):

∣∣pz,φ|y(xi, φi|yi; θ) − qw,φ|y(xi, φi|yi; θ)
∣∣ ≤ py|z(xi;σ

2)π(φi;β)

py(yi; θ)

[
bi +

ai

di

ci

]

≤ py|z(xi;σ
2)π(φi;β)

py(yi; θ)

[
C3,Jh+

(C1,J + C2,Jh)
J

C5,y

C3,Jh

]
. (17)

(3) The bound on qw,φ|y(xi, φi|yi; θ) can be deduced from inequalities (14) and (15):

qw,φ|y(xi, φi|yi; θ) =
py|z(xi;σ

2)π(φi;β)

qy(yi; θ)
qw|φ

(
xi|φi; γ

2
)

≤ py|z(xi;σ
2)π(φi;β)

C5,y

(C1,J + C2,Jh)
J . (18)
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(4) The total variation distance can now be bounded. By inequation (8), we have:

∥∥pz,φ|y − qw,φ|y

∥∥
TV

≤
∫
. . .

∫ ( I∑

i=1

∣∣pz,φ|y(xi, φi|yi; θ) − qw,φ|y(xi, φi|yi; θ)
∣∣

i−1∏

l=1

pz,φ|y(xl, φl|yl; θ)

I∏

l=i+1

qw,φ|y(xl, φl|yl; θ)

)
dx1 . . . dxIdφ1 . . . dφI .

And so, using inequalities (17) and (18) we can write:

∥∥pz,φ|y − qw,φ|y

∥∥
TV

≤
∫
. . .

∫ ( I∑

i=1

py|z(xi;σ
2)π(φi;β)

py(yi; θ)

[
C3,Jh+

(C1,J + C2,Jh)
J

C5,y

C3,Jh

]

i−1∏

l=1

pz,φ|y(xl, φl|yl; θ)

I∏

l=i+1

[
py|z(xl;σ

2)π(φl;β)

C5,y

(C1,J + C2,Jh)
J

])
dx1 . . . dxIdφ1 . . . dφI

≤
[
C3,Jh+

(C1,J + C2,Jh)
J

C5,y

C3,Jh

] I∑

i=1

(
(C1,J + C2,Jh)

J

C5,y

)I−i
1

py(yi; θ)
×
∫
py|z(xi;σ

2)dxi

︸ ︷︷ ︸
=1

×

∫
π(φi;β)dφi

︸ ︷︷ ︸
=1

×
i−1∏

l=1

∫ ∫
pz,φ|y(xl, φl|yl; θ)dxldφl

︸ ︷︷ ︸
=1

×
I∏

l=i+1

∫ ∫ [
py|z(xl;σ

2)π(φl;β)
]
dxldφl

︸ ︷︷ ︸
=1

≤
[
C3,Jh+

(C1,J + C2,Jh)
J

C5,y

C3,Jh

] I∑

i=1

(
(C1,J + C2,Jh)

J

C5,y

)I−i
1

py(yi; θ)
=: C(y)h,

where C(y) is independent of h if h < H0.

�.

A.2. Proof of part 2

In this part, we aim at bounding the distance between the likelihoods py and qy of the models M and Mh.
We have proved in (15), that there exists C3,J such that:

|py(yi; θ) − qy(yi; θ)| ≤ C3,Jh,

where C3,J is a function of C1,J and C2,J (see equation (14)). C1,J and C2,J are independent of the parameters θ
and so does C3,J . As a consequence, we can bound the error induced by the numerical scheme on the likelihood
functions:

|py(y; θ) − qy(y; θ)| =

∣∣∣∣∣

I∏

i=1

py(yi; θ) −
I∏

i=1

qy(yi; θ)

∣∣∣∣∣

≤
I∑

i=1

|py(yi; θ) − qy(yi; θ)|
i−1∏

l=1

py(yl; θ)

I∏

l=i+1

qy(yl; θ).

The quantity py(yi; θ) can be bounded as follows:

py(yi; θ) =

∫
py|z(yi|xi; θ)pz|φ(xi|φi; θ)π(φi;β)dxidφi

≤
∫
py|z(yi|xi; θ)C

J
1,Jπ(φi;β)dxidφi by lemma (1)

≤ CJ
1,J .

As a consequence:

qy(yi; θ) ≤ |py(yi; θ) − qy(yi; θ)| + py(yi; θ)

≤ C3,Jh+ CJ
1,J by inequality (15).
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At last, there exists a non-negative constant MI,J such that, for every θ ∈
{
θ = (β, σ2, γ2), γ2

0 < γ2 < Γ2
0

}
,

|py(y; θ) − qy(y; θ)| ≤
I∑

i=1

C3,Jh(C
J
1,J )i−1(C3,Jh+ CJ

1,J )I−i−1

≤ MI,Jh. (19)

A.3. Proof of corollary 1

Let θ∞ and θh,∞ be the maxima of py(y; θ) and qy(y; θ) respectively. We aim at bounding the distance
between θ∞ and θh,∞ induced by the Euler-Maruyama approximation.
By the Taylor’s theorem applied to py(y; θ) and qy(y; θ), we can write:

py(y; θh,∞) = py(y; θ∞) + (θh,∞ − θ∞)t

[∫ 1

0

(1 − t)Hpy
{θh,∞ + t(θh,∞ − θ∞)} dt

]
(θh,∞ − θ∞),

qy(y; θ∞) = qy(y; θh,∞) + (θh,∞ − θ∞)t

[∫ 1

0

(1 − t)Hqy
{θ∞ + t(θ∞ − θh,∞)} dt

]
(θh,∞ − θ∞).

As a consequence, we can write:

py(y; θ∞) − py(y; θh,∞) + qy(y; θh,∞) − qy(y; θ∞) = −(θh,∞ − θ∞)t

∫ 1

0

(1 − t)Hpy
{θh,∞ + t(θh,∞ − θ∞)} dt(θh,∞ − θ∞)

−(θh,∞ − θ∞)t

∫ 1

0

(1 − t)Hqy
{θ∞ + t(θ∞ − θh,∞)} dt(θh,∞ − θ∞)

≥ ε1 ‖θh,∞ − θ∞‖2
∫ 1

0

(1 − t)dt+ ε2 ‖θh,∞ − θ∞‖2
∫ 1

0

(1 − t)dt

≥ (ε1 + ε2)

2
‖θh,∞ − θ∞‖2

,

by assumption (A4). Therefore, we have :

‖θh,∞ − θ∞‖2 ≤ 2

(ε1 + ε2)
(py(y; θ∞) − py(y; θh,∞)) + (qy(y; θh,∞) − qy(y; θ∞))

≤ 4

(ε1 + ε2)
‖py(y; .) − qy(y; .)‖∞

≤ 4

ε1 + ε2
MI,Jh by inequation (19).

Finally,

‖θh,∞ − θ∞‖2 ≤ 4

ε1 + ε2
MI,Jh.


