117 research outputs found

    Polarized line formation with J-state interference in the presence of magnetic fields: A heuristic treatment of collisional frequency redistribution

    Full text link
    An expression for the partial frequency redistribution (PRD) matrix for line scattering in a two-term atom, which includes the J-state interference between its fine structure line components is derived. The influence of collisions (both elastic and inelastic) and an external magnetic field on the scattering process is taken into account. The lower term is assumed to be unpolarized and infinitely sharp. The linear Zeeman regime in which the Zeeman splitting is much smaller than the fine structure splitting is considered. The inelastic collision rates between the different levels are included in our treatment. We account for the depolarization caused by the collisions coupling the fine structure states of the upper term, but neglect the polarization transfer between the fine structure states. When the fine structure splitting goes to zero, we recover the redistribution matrix that represents the scattering on a two-level atom (which exhibits only m-state interference --- namely the Hanle effect). The way in which the multipolar index of the scattering atom enters into the expression for the redistribution matrix through the collisional branching ratios is discussed. The properties of the redistribution matrix are explored for a single scattering process for an L=0 to 1 to 0 scattering transition with S=1/2 (a hypothetical doublet centered at 5000 A and 5001 A). Further, a method for solving the Hanle radiative transfer equation for a two-term atom in the presence of collisions, PRD, and J-state interference is developed. The Stokes profiles emerging from an isothermal constant property medium are computed.Comment: Accepted for publication in Journal of Quantitative Spectroscopy and Radiative Transfer (JQSRT

    On the Sensitivity of Partial Redistribution Scattering Polarization Profiles to Various Atmospheric Parameters

    Full text link
    This paper presents a detailed study of the scattering polarization profiles formed under partial frequency redistribution (PRD) in two thermal models of the solar atmosphere. Particular attention is given to understanding the influence of several atmospheric parameters on the emergent fractional linear polarization profiles. The shapes of these Q/IQ/I profiles are interpreted in terms of the anisotropy of the radiation field, which in turn depends on the source function gradient that sets the angular variation of the specific intensity. We define a suitable frequency integrated anisotropy factor for PRD that can be directly related to the emergent linear polarization. We show that complete frequency redistribution is a good approximation to model weak resonance lines. We also show that the emergent linear polarization profiles can be very sensitive to the thermal structure of the solar atmosphere and, in particular, to spatial variations of the damping parameter.Comment: 45 pages, 16 figures, accepted for publication in the Astrophysical Journal (2010

    Origin of spatial variations of scattering polarization in the wings of the Ca {\sc i} 4227 \AA line

    Full text link
    Polarization that is produced by coherent scattering can be modified by magnetic fields via the Hanle effect. According to standard theory the Hanle effect should only be operating in the Doppler core of spectral lines but not in the wings. In contrast, our observations of the scattering polarization in the Ca {\sc i} 4227 \AA line reveals the existence of spatial variations of the scattering polarization throughout the far line wings. This raises the question whether the observed spatial variations in wing polarization have a magnetic or non-magnetic origin. A magnetic origin may be possible if elastic collisions are able to cause sufficient frequency redistribution to make the Hanle effect effective in the wings without causing excessive collisional depolarization, as suggested by recent theories for partial frequency redistribution with coherent scattering in magnetic fields. To model the wing polarization we apply an extended version of the technique based on the "last scattering approximation". This model is highly successful in reproducing the observed Stokes Q/IQ/I polarization (linear polarization parallel to the nearest solar limb), including the location of the wing polarization maxima and the minima around the Doppler core, but it fails to reproduce the observed spatial variations of the wing polarization in terms of magnetic field effects with frequency redistribution. This null result points in the direction of a non-magnetic origin in terms of local inhomogeneities (varying collisional depolarization, radiation-field anisotropies, and deviations from a plane-parallel atmospheric stratification).Comment: Accepted in May 2009 for publication in The Astrophysical Journa
    • …
    corecore