15 research outputs found

    On the improvement of blood sample collection at clinical laboratories

    Get PDF
    Background: Blood samples are usually collected daily from different collection points, such hospitals and health centers, and transported to a core laboratory for testing. This paper presents a project to improve the collection routes of two of the largest clinical laboratories in Spain. These routes must be designed in a cost-efficient manner while satisfying two important constraints: (i) two-hour time windows between collection and delivery, and (ii) vehicle capacity. Methods: A heuristic method based on a genetic algorithm has been designed to solve the problem of blood sample collection. The user enters the following information for each collection point: postal address, average collecting time, and average demand (in thermal containers). After implementing the algorithm using C programming, this is run and, in few seconds, it obtains optimal (or near-optimal) collection routes that specify the collection sequence for each vehicle. Different scenarios using various types of vehicles have been considered. Unless new collection points are added or problem parameters are changed substantially, routes need to be designed only once. Results: The two laboratories in this study previously planned routes manually for 43 and 74 collection points, respectively. These routes were covered by an external carrier company. With the implementation of this algorithm, the number of routes could be reduced from ten to seven in one laboratory and from twelve to nine in the other, which represents significant annual savings in transportation costs. Conclusions: The algorithm presented can be easily implemented in other laboratories that face this type of problem, and it is particularly interesting and useful as the number of collection points increases. The method designs blood collection routes with reduced costs that meet the time and capacity constraints of the problem.Alex Grasas and Helena Ramalhinho acknowledge financial support from the Spanish Ministry of Economy and Competitiveness, through the Severo Ochoa Programme for Centres of Excellence in R&D (SEV-2011-0075). The work of Luciana S. Pessoa was partially supported by HAROSA@IB (CYTED2010-511RT0419

    Cascade sensitivity measures

    No full text
    In risk analysis, sensitivity measures quantify the extent to which the probability distribution of a model output is affected by changes (stresses) in individual random input factors. For input factors that are statistically dependent, we argue that a stress on one input should also precipitate stresses in other input factors. We introduce a novel sensitivity measure, termed cascade sensitivity, defined as a derivative of a risk measure applied on the output, in the direction of an input factor. The derivative is taken after suitably transforming the random vector of inputs, thus explicitly capturing the direct impact of the stressed input factor, as well as indirect effects via other inputs. Furthermore, alternative representations of the cascade sensitivity measure are derived, allowing us to address practical issues, such as incomplete specification of the model and high computational costs. The applicability of the methodology is illustrated through the analysis of a commercially used insurance risk model
    corecore