22 research outputs found

    Desarrollo y optimización de 'green composites' basados en matrices derivadas de aceites vegetales modificados y refuerzos de fibras minerales

    Full text link
    [EN] In recent years, the sensitiveness of society about the conservation of environment has increased; this has promoted the development of polymeric materials derived from renewable resources. These new polymeric materials have good properties and can be used for the development of 'green composites'. The main objective of thisdoctoral thesis is the development and optimization of 'green composites', using matrices derived from epoxidized vegetable oils and mineral fibers, which have similar properties to glass fibers. The matrices used are based on epoxidized linseed oil (ELO) and epoxidized soybean oil (ESBO), and two types of crosslinking agent. One is a eutectic system of phthalic anhydride (PA), 23.8 wt%, and maleic anhydride (MA), 76.2 wt%, with a melting temperature of 48.3 °C. The other crosslinking agent was methyl nadic anhydride (MNA) which is liquid at room temperature. Thermoset materials obtained show that MNA crosslinker provides materials with improved mechanical and thermomechanical properties when compared to thermoset materials obtained with the PA/MA system. Interface phenomena of composites based on ELO-MNA and ESBO-MNA with mineral fibers from basalt and slate was evaluated by the single fiber fragmentation test (SFFT) to assess fiber-matrix interactions on the selected composites Basalt fibers were modified with two amino-silanes ((3-aminopropyl) trimethoxysilane and [3-(2-aminoethylamino)propyl]trimethoxysilane) and two glycidyl-silanestrimethoxy[2-(7-oxabicyclo[4.1.0]hept-3-yl)ethyl]silane and (3-glycidyloxypropyl) trimethoxysilane). SFFT determined that the interfacial shear stress (¿) of basalt fibers and ELO-MNA and ESBO-MNA matrices, is higher with basalt fibers treated with amino-silane [3-(2-aminoethylamino)propyl]trimethoxysilane and glycidyl silane trimethoxy[2-(7-oxabicyclo[4.1.0]hept-3-yl)ethyl]silane with both matrices. By considering the results obtained with the SFFT technique, composite laminates containing basalt fabrics modified with silanes [3-(2-aminoethylamino)propyl] trimethoxysilane and trimethoxy[2-(7-oxabicyclo[4.1.0]hept-3-yl)ethyl]silane were manufactured. These composite laminates offer good mechanical properties as expected on the base of SFFT results, with optimum results for composites with basalt fabric previously modified with([trimethoxy [2-(7-oxabicyclo [4.1.0] hept- 3-yl) ethyl] silane. Slate fibers were treated with an amino-silane[3-(2-aminoethylamino)propyl]trimethoxysilane, a glycidyl-silane trimethoxy[2-(7-oxabicyclo [4.1.0] hept-3-yl)]-silane, a zirconate (zirconium(IV)bis(dietilcitrato)dipropóxido) and a titanate (titanium (IV)(triethanolaminato)isopropoxide and ELO-MNAwas selected as matrix because it offers has good mechanical properties. The mechanical characterization of composites made from slate fabrics revealed that the best results are obtained using glycidyl silane and titanate coupling agents. Green composite made withslate fiber modified with trimethoxy[2-(7-oxabicyclo[4.1.0]hept-3-yl)ethyl]silane and ELO-MNA resin offers the best mechanical properties. This material has a flexural strength of 402.1 MPa, flexural modulus of 19.7 GPa, a tensile strength of 359.1 MPa and a Young's modulus of 25.6 GPa. These good properties allow it to compete with conventional composites manufactured with glass fiber.[ES] En los últimos años ha aumentado la sensibilidad de la sociedad ante la conservación del medio ambiente, lo que ha llevado al desarrollo de materiales poliméricos derivados de recursos renovables. Estos nuevos materiales poliméricos presentan propiedades tales que pueden usarse para el desarrollo de 'green composites'. El principal objetivo de esta tesis doctoral es el desarrollo y optimización de 'green composites', utilizando matrices derivadas de aceites vegetales epoxidados y fibras minerales, que presentan propiedades similares a las fibras de vidrio. Las matrices utilizadas se basan en aceite de linaza epoxidado (ELO) y aceite de soja epoxidado (ESBO), y se han utilizado dos tipos de agentes entrecruzantes. Uno es una mezcla de anhídrido ftálico (PA), 23,8% en peso, y anhídrido maleico (MA), 76,2 % en peso, que presenta una transformación eutéctica al porcentaje dado y cuya temperatura de fusión ocurre a 48,3 ºC. El otro agente entrecruzante utilizado es anhídrido metil nádico (MNA) que es líquido a temperatura ambiente. Los materiales termoestables obtenidos ponen de manifiesto que el agente entrecruzante MNA proporciona materiales con mejores propiedades mecánicas y termomecánicas que los obtenidos con la mezcla de PA/MA. A partir de las resinas basadas en ELO-MNA y ESBO-MNA y fibras de basalto y pizarra, se realiza la evaluación de la entrecara de los composites mediante el test de fragmentación de una sola fibra (SFFT) y posteriormente se realiza y evalúa los materiales compuestos seleccionados. Las fibras de basalto se modifican con dos amino-silano (3-aminopropil)trimetoxisilano y [3-(2-aminoetilamino)propil]trimetoxisilano) y dos glicidil-silano trimetoxi[2-(7-oxabiciclo[4.1.0]hept-3-il)etil]silano y (3-glicidiloxipropil) trimetoxisilano. El SFFT determina que el esfuerzo cortante en la entrecara (¿), de las fibras de basalto y las matrices ELO-MNA y ESBO-MNA, es más elevado con las fibras tratadas con el amino-silano [3-(2-aminoetilamino)propil]trimetoxisilano y con el glicidil-silano trimetoxi[2-(7-oxabiciclo[4.1.0]hept-3-il)etil]silano con ambas matrices. Debido a los resultados obtenidos con la técnica SFFT se realizan materiales compuestos utilizando tejidos de basalto modificados con los silanos [3-(2-aminoetilamino)propil]trimetoxisilano y trimetoxi[2-(7-oxabiciclo[4.1.0]hept-3-il)etil]silano. De esta forma se obtienen materiales compuestos con buenas propiedades mecánicas y se valida la técnica SFFT, ya que el material compuesto con mejores propiedades es realizado con los tejidos de basalto modificado con ([trimetoxi[2-(7-oxabiciclo[4.1.0]hept-3-il)etil]silano, tal y como se predijo con la técnica SFFT. Las fibras de pizarra fueron tratadas con un amino-silano ([3-(2-aminoetilamino)propil]trimetoxisilano), un glicidil-silano trimetoxi[2-(7-oxabiciclo[4.1.0]hept-3-il)etil]silano, un zirconato (zirconio(IV)bis(dietilcitrato)dipropóxido) y un titanato (titanio(IV)(trietanolaminato)isopropóxido y se seleccionó como matriz ELO-MNA debido a sus buenas propiedades mecánicas.La caracterización mecánica de los composites realizados con tejidos de pizarra reveló que los mejores resultados se obtienen utilizando los agentes de acoplamiento glicidil-silano y titanato. El 'green composite' que presenta las mejores propiedades mecánicas es el realizado con fibra de pizarra modificada con trimetoxi[2-(7-oxabiciclo[4.1.0]hept-3-il)etil]silano y la resina ELO-MNA. Este material presenta una resistencia a flexión de 402,1 MPa, un módulo a flexión de 19,7 GPa, la resistencia a tracción es de 359,1 MPa y el Módulo de Young es de 25,6 GPa. Las buenas propiedades resistentes que presenta le permite poder sustituir a composites tradicionales realizados con fibra de vidrio.[CA] En els últims anys ha augmentat la sensibilitat de la societat davant la conservació del medi ambient, el que ha portat al desenvolupament de materials polimèrics derivats de recursos renovables. Aquests nous materials polimèrics presenten propietats tals que poden usar-se per al desenvolupament de ''green composites''. El principal objectiu d'aquesta tesi doctoral és el desenvolupament i optimització de ''green composites'', utilitzant matrius derivades d'olis vegetals epoxidats i fibres minerals, que presenten propietats similars a les fibres de vidre. Les matrius utilitzades es basen en oli de llinosa epoxidat (ELO) i oli de soia epoxidat (ESBO), i s'han utilitzat dos tipus d'agents d'entrecreuament. Un és una barreja d'anhídrid ftàlic (PA), 23,8 % en pes, i anhídrid maleic (MA), 76,2 % en pes, que presenta una transformació eutèctica al percentatge donat i la seua temperatura de fusió passa a 48,3 ºC. L'altre agent d'entrecreuament utilitzat és anhídrid metil nàdic (MNA) que és líquid a temperatura ambient. Els materials termostables obtinguts posen de manifest que l'agent d'entrecreuament MNA proporciona materials amb millors propietats mecàniques i termomecàniques que els obtinguts amb la mescla de PA/MA. A partir de les resines basades en ELO-MNA i ESBO-MNA i fibres de basalt i llicorella, es va realitzar l'avaluació interfacial dels 'composites' utilizant el test de fragmentació d'una única fibra (SFFT) i posteriorment es van fabricar i avaluar els materials compostos seleccionats. Les fibres de basalt es van modificar amb dos amino-silans ((3-aminopropil)trimetoxisilà i [3-(2-aminoetilamino)propil]trimetoxisilà) i dos glicidil-silans trimetoxi[2-(7-oxabicicle[4.1.0]hept-3-il)etil]silà i 3-glicidiloxipropil)trimetoxisilà. El SFFT va determinar que l'esforç de tall interfacial (¿), de les fibres de basalt i les matrius ELO-MNA i ESBO-MNA, és més elevat amb les fibres tractades amb l'amino-silà [3-(2-aminoetilamino)propil]trimetoxisilà i amb el glicidil-silà ([trimetoxi[2-(7-oxabicicle[4.1.0]hept-3-il)etil]silà amb ambdues matrius. Degut als resultats obtinguts amb la tècnica SFFT es van realitzar materials compostos utilitzant teixits de basalt modificats amb els silans [3-(2-aminoetilamino)propil]trimetoxisilà i trimetoxi[2-(7-oxabicicle[4.1.0]hept-3-il)etil]silà. D'aquesta forma s'obtenen materials compostos amb bones propietats mecàniques i es va validar la tècnica SFFT, ja que el material compost amb millors propietats va ser realitzat amb els teixits de basalt modificat amb trimetoxi[2-(7-oxabicicle[4.1.0]hept-3-il)etil]silà, tal com es va predir amb la tècnica SFFT. Les fibres de llicorella van ser tractades amb un amino-silà ([3-(2-aminoetilamino)propil]trimetoxisilà), un glicidil-silà trimetoxi[2-(7-oxabicicle [4.1.0]hept-3-il)etil]silà, un zirconat (zirconi(IV)bis(dietilcitrat) dipropòxid) i un titanat (titani(IV)(trietanolaminato)isopropòxid i es va seleccionar com a matriu ELO-MNA a causa de les seues bones propietats mecàniques. La caracterització mecànica dels 'composites' realitzats amb teixits de llicorella va revelar que els millors resultats s'obtenen utilitzant els agents d'acoblament glicidil-silà i titanat. El 'green composite' que presenta les millors propietats mecàniques és el realitzat amb fibra de llicorella modificada amb trimetoxi[2-(7-oxabicicle[4.1.0]hept-3-il)etil]silà i la resina ELO-MNA. Aquest material presenta una resistència a flexió de 402,1 MPa, un mòdul a flexió de 19,7 GPa, la resistència a tracció és de 359,1 MPa i el mòdul de Young és de 25,6 GPa. Les bones propietats resistents que presenta li permeten poder substituir a 'composites' tradicionals realitzats amb fibra de vidre.Samper Madrigal, MD. (2015). Desarrollo y optimización de 'green composites' basados en matrices derivadas de aceites vegetales modificados y refuerzos de fibras minerales [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/52602TESISPremios Extraordinarios de tesis doctorale

    Properties of composite laminates based on basalt fibers with epoxidized vegetable oils

    Full text link
    This paper deals with the development of polymeric materials derived from epoxidized vegetable oils which have been used in the manufacture of laminated composite materials with basalt fabrics. Epoxidized linseed oil (ELO) and epoxidized soybean oil (ESBO) were used as biobased matrices. The basalt fabrics were modified with amino-silane and glycidyl-silane to increase fiber-matrix interactions. The curing behaviour of both resins was evaluated by differential scanning calorimetry (DSC) and oscillatory rheometry (OR). The evaluation of mechanical properties was made by tensile, flexural and Charpy tests. The extent of the fiber-matrix interactions among interface was evaluated by scanning electron microscopy (SEM). The obtained results revealed that surface modification of basalt fibers with glycidyl-silane clearly improves the mechanical properties of the composites. The use of the ELO resin as matrix for composite laminates improved substantially the mechanical performance compared to composites made with ESBO. (C) 2015 Elsevier Ltd. All rights reserved.This study was funded by the "Conselleria d'Educacio, Cultura i Esport" - Generalitat Valenciana (reference number: GV/2014/008).Samper Madrigal, MD.; Petrucci, R.; Sánchez Nacher, L.; Balart Gimeno, RA.; Kenny, JM. (2015). Properties of composite laminates based on basalt fibers with epoxidized vegetable oils. Materials and Design. 72:9-15. doi:10.1016/j.matdes.2015.02.002S9157

    New environmentally friendly composite laminates with epoxidized linseed oil (ELO) and slate fiber fabrics

    Full text link
    This work focuses on the development of new composite laminates based on the use of epoxidized linseed oil (ELO) as matrix and reinforcement fabrics from slate fibers with different silane treatments. The curing behavior of the ELO resin is followed by differential scanning calorimetry (DSC) and the gelation is studied by oscillatory rheometry and gel-time. Composite laminates of ELO matrix and slate fabrics are manufactured by Rein Transfer Molding (RTM) and the mechanical properties of the composite laminates are tested in tensile, flexural and impact conditions. The effects of different silane coupling agents on fiber-matrix interface phenomena are studied by scanning electron microscopy (SEM). As in other siliceous fibers, silane treatment leads to improved mechanical performance but glycidyl silane treatment produces the optimum results as the interactions between silanized slate fiber and epoxidized linseed oil are remarkably improved as observed by scanning electron microscopy (SEM). (C) 2014 Elsevier Ltd. All rights reserved.This study has been funded by the "Conselleria d'Educacio, Cultura i Esport" - Generalitat Valenciana (reference number: GV/2014/008). Authors thank Microscopy Services at UPV for helping in using SEM technique.Samper Madrigal, MD.; Petrucci, R.; Sánchez Nacher, L.; Balart Gimeno, RA.; Kenny, JM. (2015). New environmentally friendly composite laminates with epoxidized linseed oil (ELO) and slate fiber fabrics. Composites Part B: Engineering. 71:203-209. https://doi.org/10.1016/j.compositesb.2014.11.0342032097

    Surface modification of polylactic acid (PLA) by air atmospheric plasma treatment

    Full text link
    The main objective of this experimental study is the validation of the technique of atmospheric plasma with the aim of improving the surface energy of the polylactic acid (PLA) for further adhesion uses. The wettability of PLA has been improved with the application of an atmospheric plasma surface treatment. This method provides good adhesion properties with the optimizing the process parameters in terms of the nozzle substrate distance and sample advance rate. In order to achieve that goal, a new and environmentally friendly technology has been used which is based on the use of air atmospheric plasma. The effects of the surface treatment on this type of substrates have been analyzed. The macroscopic effects of the process parameters have been determined using contact angle measurements and subsequent surface free energy (SFE) calculation. In addition, the chemical changes at the topmost layers have been studied using X-ray photoelectron spectroscopy (XPS) and Fourier transformed infrared spectroscopy (FTIR). Surface topography changes due to the plasma-acting mechanisms have been evaluated with scanning electron microscopy (SEM) and atomic force microscopy (AFM). The obtained results show a remarkable increase in surface free energy from 37.1 mJ m 2 up to values of 60 mJ m 2 thus indicating the effectiveness of the air plasma treatment. The main advantage of this technology is that the industrial process is continuous, it is easy to establish in current production systems and it does not generate wastes. (C) 2014 Elsevier Ltd. All rights reserved.Jordá Vilaplana, A.; Fombuena Borrás, V.; García García, D.; Samper Madrigal, MD.; Sánchez Nacher, L. (2014). Surface modification of polylactic acid (PLA) by air atmospheric plasma treatment. European Polymer Journal. (58):23-33. doi:10.1016/j.eurpolymj.2014.06.002S23335

    Green composites based on polypropylene matrix and hydrophobized spend coffee ground (SCG) powder

    Full text link
    Green composites were prepared with polypropylene matrix and 20 wt.% spent coffee ground (SCG) powder for uses as a wood plastic composite (WPC). The effects of hydrophobic treatment with palmitoyl chloride on SCG powder is compared with conventional surface treatment based on silanization with (3-glycidyloxypropyl) trimethoxysilane and the use of a maleated copolymer compatibilizer (polypropylene-graft-maleic anhydride, PP-g-MA) in terms of mechanical properties, morphology, thermal properties and water uptake. Composites were previously mixed in a twin-screw co-rotating extruder and subsequently subjected to injection moulding. The comparative effect of the different surface treatments and or compatibilizers on mechanical performance was studied by flexural, impact tests and dynamic mechanical thermal analysis (DMTA-torsion); in addition, the stabilizing effect of SCG was revealed by differential scanning calorimetry (DSC) and thermogravymetric analysis (TGA). As one of the main drawbacks of wood plastic composites and natural fibre reinforced plastics is the moisture gain, water uptake tests were carried out in order to quantify the effectiveness of the hydrophobization process with palmitoyl chloride. Results show a slight increase in flexural modulus for composites with both untreated and treated/compatibilized SCG powder (20 wt.%). As expected, thermal stability is improved as indicated by an increase of more than 8% in the onset degradation temperature by DSC if compared to unfilled polypropylene. Fracture analysis by scanning electron microscopy (SEM) shows better particle dispersion for PP-SCG composites with hydrophobized SCG with palmitoyl chloride treatment; in addition a remarkable decrease in water uptake is observed for composites with hydrophobized SCG. ©2015 Elsevier Ltd. All rights reserved.García García, D.; Carbonell Verdú, A.; Samper Madrigal, MD.; García Sanoguera, D.; Balart Gimeno, RA. (2015). Green composites based on polypropylene matrix and hydrophobized spend coffee ground (SCG) powder. Composites Part B: Engineering. 78:256-265. doi:10.1016/j.compositesb.2015.03.0802562657

    The effect of sepiolite on the compatibilization of polyethylene thermoplastic starch blends for environmentally friendly films

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10853-014-8647-8[EN] Green polyethylene is a new and attracting polymer from biobased resources (sugarcane) and identical properties to petroleum-based polyethylene. Its potential in the packaging industry is really promising. In this work, we report the use of different compatibilizer systems for green polyethylene (from sugarcane) and thermoplastic starch (30 wt% TPS) in order to increase ductile mechanical properties and biodegradable content. Typical petroleum-based graft copolymer of polyethylene with maleic anhydride (PE-g-MA) is used as reference compatibilizer, and new compatibilizer systems are developed using sepiolite. The obtained results show that sepiolite-based compatibilizers provide good compatibilization properties as observed by a remarkable increase in elongation at break and a noticeable size reduction of the TPS domains dispersed in the green polyethylene matrix as observed by scanning electron microscopy (SEM).This study has been funded by the ‘‘Conselleria d’Educacio´, Cultura i Esport’’—Generalitat Valenciana (Reference number: GV/2014/008). Authors thank Tolsa S.A for kindly supply sepiolite for this study and Microscopy Services at UPV for helping in using SEM and TEM techniques.Samper Madrigal, MD.; Fenollar Gimeno, OÁ.; Dominici, F.; Balart Gimeno, RA.; Kenny, JM. (2015). The effect of sepiolite on the compatibilization of polyethylene thermoplastic starch blends for environmentally friendly films. Journal of Materials Science. 50(2):863-872. https://doi.org/10.1007/s10853-014-8647-8S863872502Alvarenga RAF, Dewulf J (2013) Plastic vs. fuel: Which use of the Brazilian ethanol Can bring more environmental gains? Renew Energ 59:49–52Kikuchi Y, Hirao M, Narita K, Sugiyama E, Oliveira S, Chapman S, Arakaki MM, Cappra CM (2013) Environmental performance of biomass-derived chemical production: a case study on sugarcane-derived polyethylene. J Chem Eng Jpn 46:319–325Liptow C, Tillman A-M (2012) A comparative Life Cycle Assessment Study of polyethylene based on sugarcane and crude oil. J Ind Ecol 16:420–435Taghizadeh A, Sarazin P, Favis BD (2013) High molecular weight plasticizers in thermoplastic starch/polyethylene blends. J Mater Sci 48:1799–1811. doi: 10.1007/s10853-012-6943-8Park HM, Lee WK, Park CY, Cho WJ, Ha CS (2003) Environmentally friendly polymer hybrids—Part I—Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites. J Mater Sci 38:909–915. doi: 10.1023/A:1022308705231Pimentel TAPF, Duraes JA, Drummond AL, Schlemmer D, Falcao R, Araujo Sales MJ (2007) Preparation and characterization of blends of recycled polystyrene with cassava starch. J Mater Sci 42:7530–7536. doi: 10.1007/s10853-007-1622-xRosa DS, Guedes CGF, Carvalho CL (2007) Processing and thermal, mechanical and morphological characterization of post-consumer polyolefins/thermoplastic starch blends. J Mater Sci 42:551–557. doi: 10.1007/s10853-006-1049-9Kaseem M, Hamad K, Deri F (2012) Thermoplastic starch blends: a review of recent works. Polym Sci Ser A 54:165–176Nafchi AM, Moradpour M, Saeidi M, Alias AK (2013) Thermoplastic starches: properties, challenges, and prospects. Starch-Starke 65:61–72Jimenez A, Jose Fabra M, Talens P, Chiralt A (2012) Edible and biodegradable starch films: a review. Food Bioprocess Tech 5:2058–2076Bikiaris D, Panayiotou C (1998) LDPE/starch blends compatibilized with PE-g-MA copolymers. J Appl Polym Sci 70:1503–1521Liu W, Wang YJ, Sun Z (2003) Effects of polyethylene-grafted maleic anhydride (PE-g-MA) on thermal properties, morphology, and tensile properties of low-density polyethylene (LDPE) and corn starch blends. J Appl Polym Sci 88:2904–2911Pedroso AG, Rosa DS (2005) Mechanical, thermal and morphological characterization of recycled LDPE/corn starch blends. Carbohyd Polym 59:1–9Rodriguez-Gonzalez FJ, Ramsay BA, Favis BD (2003) High performance LDPE/thermoplastic starch blends: a sustainable alternative to pure polyethylene. Polymer 44:1517–1526Yang L, Liu W (2010) Effects of functional groups of starch on asa emulsification and sizing. In: Sun RC, Fu SY (eds) Research progress in paper industry and biorefinery. China University of Technology Press, Guangzhou, pp 1936–1939Kapusniak J, Jochym K, Bajer K, Bajer D (2011) Review of methods for chemical modification of starch. Przem Chem 90:1521–1526Ren L, Jiang M, Tong J, Bai X, Dong X, Zhou J (2010) Influence of surface esterification with alkenyl succinic anhydrides on mechanical properties of corn starch films. Carbohyd Polym 82:1010–1013Cunha AG, Gandini A (2010) Turning polysaccharides into hydrophobic materials: a critical review. Part 2. Hemicelluloses, chitin/chitosan, starch, pectin and alginates. Cellulose 17:1045–1065Bhattacharya M (1998) Stress relaxation of starch synthetic polymer blends. J Mater Sci 33:4131–4139. doi: 10.1023/A:1004449002240Sam ST, Ismail H, Ahmad Z (2011) Soil burial of polyethylene-g-(maleic anhydride) compatibilised LLDPE/soya powder blends. Polym-Plast Technol 50:851–861Majid RA, Ismail H, Taib RM (2009) Effects of PE-g-MA on tensile properties, morphology and water absorption of LDPE/thermoplastic sago starch blends. Polym-Plast Technol 48:919–924Kahar M, Wahab A, Ismail H, Othman N (2012) Compatibilization effects of PE-g-MA on mechanical, thermal and swelling properties of high density polyethylene/natural rubber/thermoplastic tapioca starch blends. Polym-Plast Technol 51:298–303Xu Y, Thurber CM, Lodge TP, Hillmyer MA (2012) Synthesis and remarkable efficacy of model polyethylene-graft-poly(methyl methacrylate) copolymers as compatibilizers in polyethylene/poly(methyl methacrylate) blends. Macromolecules 45:9604–9610Wang N, Yu J, Ma X, Wu Y (2007) The influence of citric acid on the properties of thermoplastic starch/linear low-density polyethylene blends. Carbohyd Polym 67:446–453Kim JP, Yoon TH, Mun SP, Rhee JM, Lee JS (2006) Wood-polyethylene composites using ethylene-vinyl alcohol copolymer as adhesion promoter. Bioresource Technol 97:494–499Choudhury A, Mukherjee M, Adhikari B (2006) Recycling of polyethylene/nylon 6 based waste oil pouches using compatibilizer. Indian J Chem Techn 13:233–241Galan E (1996) Properties and applications of palygorskite-sepiolite clays. Clay Miner 31:443–453Wan C, Chen B (2011) Synthesis and characterization of biomimetic hydroxyapatite/sepiolite nanocomposites. Nanoscale 3:693–700Sarifuddin N, Ismail H, Ahmad Z (2014) Influence of halloysite nanotubes hybridized with kenaf core fibers on the physical and mechanical properties of low density polyethylene/thermoplastic sago starch blends. Polym-Plast Technol 53:107–115Scaffaro R, Botta L, Mistretta MC, La Mantia FP (2013) Processing—morphology—property relationships of polyamide 6/polyethylene blend-clay nanocomposites. Express Polym Lett 7:873–884Sarifuddin N, Ismail H (2013) Comparative study on the effect of bentonite or feldspar filled low-density polyethylene/thermoplastic sago starch/kenaf core fiber composites. Bioresources 8:4238–4257Nunez K, Rosales C, Perera R, Villarreal N, Pastor JM (2012) Poly(lactic acid)/low-density polyethylene blends and its nanocomposites based on sepiolite. Polym Eng Sci 52:988–1004Sangerano M, Pallaro E, Roppolo I, Rizza G (2009) UV-cured epoxy coating reinforced with sepiolite as inorganic filler. J Mater Sci 44:3165–3171. doi: 10.1007/s10853-009-3421-zShafiq M, Yasin T, Saeed S (2012) Synthesis and characterization of linear low-density polyethylene/sepiolite nanocomposites. J Appl Polym Sci 123:1718–1723Mir S, Yasin T, Halley PJ, Siddiqi HM, Ozdemir O, Anh N (2013) Thermal and rheological effects of sepiolite in linear low-density polyethylene/starch blend. J Appl Polym Sci 127:1330–1337Kanmani P, Rhim J-W (2014) Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocolloid 35:644–652Olmo N, Lizarbe MA, Gavilanes JG (1987) Biocompatibility and degradability of sepiolite collagen complex. Biomaterials 8:67–69Mortazavi S, Ghasemi I, Oromiehie A (2013) Effect of phase inversion on the physical and mechanical properties of low density polyethylene/thermoplastic starch. Polym Test 32:482–491Pang M-M, Pun M-Y, Ishak ZAM (2013) Degradation studies during water absorption, aerobic biodegradation, and soil burial of biobased thermoplastic starch from agricultural waste/polypropylene blends. J Appl Polym Sci 129:3656–366

    Implementación del método de aprendizaje activo y colaborativo en las prácticas de laboratorio de Materiales Ecoeficientes en modalidad virtual

    Full text link
    [EN] During the 2020/21 academic year, the active and collaborative learning methodology was implemented in the development of a laboratory practice of the Eco-efficient Materials course of the second year of the University Master's Degree in Engineering, Processing and Characterization of Materials, in virtual modality. The use of this methodology aims to promote student participation and increase their level of responsibility in the laboratory practice, making use of the advantages of a virtual modality. Before carrying out the practice, students were given a script and then an explanatory session and resolution of doubts was held. The practices were carried out in a virtual and synchronous way. The students were responsible for setting the parameters and the teacher was in charge of reproducing them in the laboratory. The objective of this work was to observe the behavior of the students in decision-making, to appreciate if they acquired the necessary knowledge for the development of the practice and to solve the problems that may arise during it. Subsequently, the learning methodology between a virtual and a face-to-face modality was compared, and an active and collaborative learning methodology was developed that can be applied in either of the two scenarios.[ES] Durante el curso 2020/21 se implementó la metodología de aprendizaje activo y colaborativo en el desarrollo de una práctica de laboratorio de la asignatura Materiales ecoeficientes del segundo curso del Máster Universitario en Ingeniería, Procesado y Caracterización de Materiales, en modalidad virtual. El uso de la metodología buscaba promover la participación de los estudiantes y aumentar su nivel de responsabilidad en la práctica, haciendo uso de las ventajas de una modalidad virtual. Antes de la realización de la práctica, se entregó a los alumnos un guión y después se realizó una sesión explicativa y de resolución de dudas. Las prácticas se realizaron de forma virtual y sincrónica. Los estudiantes eran los responsables de fijar los parámetros y el profesor el encargado de reproducirlas en el laboratorio. El objetivo de este trabajo fue observar el comportamiento de los alumnos en la toma de decisiones, apreciar si adquirían el conocimiento necesario para el desarrollo de la práctica y la resolución de los problemas que pueden surgir durante la misma. Posteriormente se comparó la metodología de aprendizaje entre una modalidad virtual y una presencial, y se desarrolló una metodología de aprendizaje activo y colaborativo que pueda aplicarse en cualquiera de los dos escenarios.Pavón Vargas, CP.; Aldas, M.; Samper Madrigal, MD.; López Martínez, J. (2021). Implementación del método de aprendizaje activo y colaborativo en las prácticas de laboratorio de Materiales Ecoeficientes en modalidad virtual. En IN-RED 2021: VII Congreso de Innovación Edicativa y Docencia en Red. Editorial Universitat Politècnica de València. 575-584. https://doi.org/10.4995/INRED2021.2021.13794OCS57558

    Implementación de la plataforma GOOGLE CLASROOM en la asignatura “Tratamiento de Residuos” para la realización de experiencia de clase inversa

    Full text link
    [EN] During the academic year 2016-17 the flipped classroom methodology was implemented using the GOOGLE CLASS platform in the "waste treatment" subject. This methodology has allowed students to have more time in the classroom to solve doubts and practical problems, increasing collaborative work. Using this methodology, the self-assessment test score increased compared to other years and students prefer this methodology to the traditional master class as indicated in an anonymous survey.[ES] Durante el curso académico 2016-17 se ha implantado la metodología de clase inversa utilizando la plataforma GOOGLE CLASSROOM en la asignatura "Tratamiento de Residuos". Esta metodología ha permitido que los alumnos dispongan de más tiempo en el aula para resolver dudas y realizar prácticas, aumentando el trabajo colaborativo. Mediante esta metodología la nota media del test de autoevaluación subió respecto a otros años y los alumnos prefieren está metodología a la tradicional clase magistral según indicaron en una encuesta anónima.López Martínez, J.; Samper Madrigal, MD.; García García, D.; Ferri, J.; Carbonell Verdú, A. (2017). Implementación de la plataforma GOOGLE CLASROOM en la asignatura “Tratamiento de Residuos” para la realización de experiencia de clase inversa. En In-Red 2017. III Congreso Nacional de innovación educativa y de docencia en red. Editorial Universitat Politècnica de València. 429-437. https://doi.org/10.4995/INRED2017.2017.6818OCS42943

    Plasticizing effect of biobased epoxidized fatty acid esters on mechanical and thermal properties of poly(lactic acid)

    Full text link
    Poly(lactic acid), PLA, is a polyester that can be produced from lactic acid derived from renewable resources. This polymer offers attracting uses in packaging industry due to its biodegradability and high tensile strength. However, PLA is quite brittle, which limits its applications. To overcome this drawback, PLA was plasticized with epoxy-type plasticizer derived from a fatty acid, octyl epoxy stearate (OES) at different loadings (1, 3, 5, 10, 15, and 20 phr). The addition of OES decreases the glass transition temperature and provides a remarkable increase in elongation at break and impact-absorbed energy. Plasticizer saturation occurs at relatively low concentrations of about 5 phr OES; higher concentration leads to phase separation as observed by field emission scanning electron microscopy (FESEM). Optimum balanced mechanical properties are obtained at relatively low concentrations of OES (5 phr), thus indicating the usefulness of this material as environmentally friendly plasticizer for PLA industrial formulations.This research was supported by the Ministry of Economy and Competitiveness-MINECO, Ref: MAT2014-59242-C2-1-R. Authors also thank to "Conselleria d'Educacio, Cultura i Esport"-Generalitat Valenciana, Ref: GV/2014/008 for financial support.Ferri Azor, JM.; Samper Madrigal, MD.; García Sanoguera, D.; Reig Pérez, MJ.; Fenollar Gimeno, OÁ.; Balart Gimeno, RA. (2016). Plasticizing effect of biobased epoxidized fatty acid esters on mechanical and thermal properties of poly(lactic acid). Journal of Materials Science. 51(11):5356-5366. https://doi.org/10.1007/s10853-016-9838-2S535653665111Alam J, Alam M, Raja M, Abduljaleel Z, Dass LA (2014) MWCNTs-reinforced epoxidized linseed oil plasticized polylactic acid nanocomposite and its electroactive shape memory behaviour. Int J Mol Sci 15(11):19924–19937. doi: 10.3390/ijms151119924Arrieta MP, Fortunati E, Dominici F, Lopez J, Kenny JM (2015) Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends. Carbohydr Polym 121:265–275. doi: 10.1016/j.carbpol.2014.12.056Dharmalingam S, Hayes DG, Wadsworth LC, Dunlap RN, DeBruyn JM, Lee J, Wszelaki AL (2015) Soil degradation of polylactic acid/polyhydroxyalkanoate-based nonwoven mulches. J Polym Environ 23(3):302–315. doi: 10.1007/s10924-015-0716-9Lin C-M, Lin C-H, Huang Y-T, Lou C-W, Lin J-H (2013) Mechanical and electrical properties of the polyaniline (PANI)/polylactic acid (PLA) nonwoven fabric. In: Kida K (ed), Machine design and manufacturing engineering II, Pts 1 and 2, vols 365–366. pp 1074–1077. doi: 10.4028/www.scientific.net/AMM.365-366.1074Serafini Immich AP, Lis Arias M, Carreras N, Luis Boemo R, Antonio Tornero J (2013) Drug delivery systems using sandwich configurations of electrospun poly(lactic acid) nanofiber membranes and ibuprofen. Mater Sci Eng C-Mater Biol Appl 33(7):4002–4008. doi: 10.1016/j.msec.2013.05.034Llorens E, Calderon S, del Valle LJ, Puiggali J (2015) Polybiguanide (PHMB) loaded in PLA scaffolds displaying high hydrophobic, biocompatibility and antibacterial properties. Mater Sci Eng C-Mater Biol Appl 50:74–84. doi: 10.1016/j.msec.2015.01.100Nainar SMM, Begum S, Ansari MNM, Hoque ME, Aini SS, Ng MH, Ruszymah BHI (2014) Effect of compatibilizers on in vitro biocompatibility of PLA-HA bioscaffold. Bioinspired Biomim Nanobiomater 3(4):208–216. doi: 10.1680/bbn.14.00014Huang R, Zhu X, Tu H, Wan A (2014) The crystallization behavior of porous poly(lactic acid) prepared by modified solvent casting/particulate leaching technique for potential use of tissue engineering scaffold. Mater Lett 136:126–129. doi: 10.1016/j.matlet.2014.08.044Yesid Gomez-Pachon E, Manuel Sanchez-Arevalo F, Sabina FJ, Maciel-Cerda A, Montiel Campos R, Batina N, Morales-Reyes I, Vera-Graziano R (2013) Characterisation and modelling of the elastic properties of poly(lactic acid) nanofibre scaffolds. J Mater Sci 48(23):8308–8319. doi: 10.1007/s10853-013-7644-7Zhang J, Yin H-M, Hsiao BS, Zhong G-J, Li Z-M (2014) Biodegradable poly(lactic acid)/hydroxyl apatite 3D porous scaffolds using high-pressure molding and salt leaching. J Mater Sci 49(4):1648–1658. doi: 10.1007/s10853-013-7848-xArmentano I, Fortunati E, Burgos N, Dominici F, Luzi F, Fiori S, Jimenez A, Yoon K, Ahn J, Kang S, Kenny JM (2015) Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. Exp Polym Lett 9(7):583–596. doi: 10.3144/expresspolymlett.2015.55Patricia Arrieta M, del Mar Castro-Lopez M, Rayon E, Fernando Barral-Losada L, Manuel Lopez-Vilarino J, Lopez J, Victoria Gonzalez-Rodriguez M (2014) Plasticized poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends incorporated with catechin intended for active food-packaging applications. J Agric Food Chem 62(41):10170–10180. doi: 10.1021/jf5029812He Y, Hu Z, Ren M, Ding C, Chen P, Gu Q, Wu Q (2014) Evaluation of PHBHHx and PHBV/PLA fibers used as medical sutures. J Mater Sci-Mater Med 25(2):561–571. doi: 10.1007/s10856-013-5073-4Vieira AC, Vieira JC, Ferra JM, Magalhaes FD, Guedes RM, Marques AT (2011) Mechanical study of PLA-PCL fibers during in vitro degradation. J Mech Behav Biomed Mater 4(3):451–460. doi: 10.1016/j.jmbbm.2010.12.006K-y Zhang, X-h Ran, Y-g Zhuang, Yao B, L-s Dong (2009) Blends of poly(lactic acid) with thermoplastic acetylated starch. Chem Res Chin Univ 25(5):748–753Chieng BW, Ibrahim NA, Yunus WMZW, Hussein MZ (2013) Plasticized poly(lactic acid) with low molecular weight poly(ethylene glycol): mechanical, thermal, and morphology properties. J Appl Polym Sci 130(6):4576–4580. doi: 10.1002/app.39742Yu Y, Cheng Y, Ren J, Cao E, Fu X, Guo W (2015) Plasticizing effect of poly(ethylene glycol)s with different molecular weights in poly(lactic acid)/starch blends. J Appl Polym Sci 132(16). doi: 10.1002/app.41808Nazari T, Garmabi H (2014) Polylactic acid/polyethylene glycol blend fibres prepared via melt electrospinning: effect of polyethylene glycol content. Micro Nano Lett 9(10):686–690. doi: 10.1049/mnl.2013.0735Piorkowska E, Kulinski Z, Galeski A, Masirek R (2006) Plasticization of semicrystalline poly(l-lactide) with poly(propylene glycol). Polymer 47(20):7178–7188. doi: 10.1016/j.polymer.2006.03.115Burgos N, Martino VP, Jimenez A (2013) Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid. Polym Degrad Stab 98(2):651–658. doi: 10.1016/j.polymdegradstab.2012.11.009Dobircau L, Delpouve N, Herbinet R, Domenek S, Le Pluart L, Delbreilh L, Ducruet V, Dargent E (2015) Molecular mobility and physical ageing of plasticized poly(lactide). Polym Eng Sci 55(4):858–865. doi: 10.1002/pen.23952Hassouna F, Raquez J-M, Addiego F, Toniazzo V, Dubois P, Ruch D (2012) New development on plasticized poly(lactide): chemical grafting of citrate on PLA by reactive extrusion. Eur Polymer J 48(2):404–415. doi: 10.1016/j.eurpolymj.2011.12.001Tsou C-H, Suen M-C, Yao W-H, Yeh J-T, Wu C-S, Tsou C-Y, Chiu S-H, Chen J-C, Wang RY, Lin S-M, Hung W-S, De Guzman M, Hu C-C, Lee K-R (2014) Preparation and characterization of bioplastic-based green renewable composites from tapioca with acetyl tributyl citrate as a plasticizer. Materials 7(8):5617–5632. doi: 10.3390/ma7085617Jing J, Qa Qiao, Jin Y, Ma C, Cai H, Meng Y, Cai Z, Feng D (2012) Molecular and mesoscopic dynamics simulations on the compatibility of PLA/plasticizer blends. Chin J Chem 30(1):133–138. doi: 10.1002/cjoc.201180454Ljungberg N, Wesslen B (2003) Tributyl citrate oligomers as plasticizers for poly (lactic acid): thermo-mechanical film properties and aging. Polymer 44(25):7679–7688. doi: 10.1016/j.polymer.2003.09.055Notta-Cuvier D, Murariu M, Odent J, Delille R, Bouzouita A, Raquez J-M, Lauro F, Dubois P (2015) Tailoring polylactide properties for automotive applications: effects of co-addition of halloysite Nanotubes and selected plasticizer. Macromol Mater Eng 300(7):684–698. doi: 10.1002/mame.201500032Carbonell-Verdu A, Bernardi L, Garcia-Garcia D, Sanchez-Nacher L, Balart R (2015) Development of environmentally friendly composite matrices from epoxidized cottonseed oil. Eur Polymer J 63:1–10. doi: 10.1016/j.eurpolymj.2014.11.043Samper MD, Fombuena V, Boronat T, Garcia-Sanoguera D, Balart R (2012) Thermal and mechanical characterization of epoxy resins (ELO and ESO) cured with anhydrides. J Am Oil Chem Soc 89(8):1521–1528. doi: 10.1007/s11746-012-2041-ySamper MD, Petrucci R, Sanchez-Nacher L, Balart R, Kenny JM (2015) Properties of composite laminates based on basalt fibers with epoxidized vegetable oils. Mater Des 72:9–15. doi: 10.1016/j.matdes.2015.02.002Samper MD, Petrucci R, Sanchez-Nacher L, Balart R, Kenny JM (2015) New environmentally friendly composite laminates with epoxidized linseed oil (ELO) and slate fiber fabrics. Compos Part B Eng 71:203–209. doi: 10.1016/j.compositesb.2014.11.034Bueno-Ferrer C, Garrigos MC, Jimenez A (2010) Characterization and thermal stability of poly(vinyl chloride) plasticized with epoxidized soybean oil for food packaging. Polym Degrad Stab 95(11):2207–2212. doi: 10.1016/j.polymdegradstab.2010.01.027Bueno-Ferrer C, Jimenez A, Garrigos MC (2010) Migration analysis of epoxidized soybean oil and other plasticizers in commercial lids for food packaging by gas chromatography-mass spectrometry. Food Addit Contam Part a—Chem Anal Control Expo Risk Assess 27(10):1469–1477. doi: 10.1080/19440049.2010.502129Fenollar O, Garcia-Sanoguera D, Sanchez-Nacher L, Lopez J, Balart R (2010) Effect of the epoxidized linseed oil concentration as natural plasticizer in vinyl plastisols. J Mater Sci 45(16):4406–4413. doi: 10.1007/s10853-010-4520-6Fenollar O, Garcia-Sanoguera D, Sanchez-Nacher L, Lopez J, Balart R (2012) Characterization of the curing process of vinyl plastisols with epoxidized linseed oil as a natural-based plasticizer. J Appl Polym Sci 124(3):2550–2557. doi: 10.1002/app.34645Semsarzadeh MA, Mehrabzadeh M, Arabshahi SS (2005) Mechanical and thermal properties of the plasticized PVC-ESBO. Iran Polym J 14(9):769–773Chieng BW, Ibrahim NA, Then YY, Loo YY (2014) Epoxidized vegetable oils plasticized poly(lactic acid) biocomposites: mechanical, thermal and morphology properties. Molecules 19(10):16024–16038. doi: 10.3390/molecules191016024Prempeh N, Li J, Liu D, Das K, Maiti S, Zhang Y (2014) Plasticizing effects of epoxidized sun flower oil on biodegradable polylactide films: a comparative study. Polym Sci Ser A 56(6):856–863. doi: 10.1134/s0965545x14060182Santos EF, Oliveira RVB, Reiznautt QB, Samios D, Nachtigall SMB (2014) Sunflower-oil biodiesel-oligoesters/polylactide blends: plasticizing effect and ageing. Polym Test 39:23–29. doi: 10.1016/j.polymertesting.2014.07.010Li H, Huneault MA (2007) Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer 48(23):6855–6866. doi: 10.1016/j.polymer.2007.09.020Arrieta MP, Lopez J, Ferrandiz S, Peltzer MA (2013) Characterization of PLA-limonene blends for food packaging applications. Polym Test 32(4):760–768. doi: 10.1016/j.polymertesting.2013.03.016Arrieta MP, Samper MD, Lopez J, Jimenez A (2014) Combined effect of poly(hydroxybutyrate) and plasticizers on polylactic acid properties for film intended for food packaging. J Polym Environ 22(4):460–470. doi: 10.1007/s10924-014-0654-

    Determinación del porcentaje de agente de acoplamiento en composites de bioPE con carga lignocelulósica

    Full text link
    En el presente trabajo se ha investigado acerca de cuál es la proporción óptima de agente de acoplamiento que se debe añadir en el desarrollo y formulación de un nuevo material compuesto, comercialmente viable, basado 100% en recursos naturales, esto es en un green composite . La matriz de este nuevo material compuesto es un biopolietileno obtenido de la caña de azúcar y como carga de refuerzo lignocelulósica se ha utilizado Thymus Moroderi (TM), un residuo que se produce como resultado de la destilación de un licor fabricado por una empresa local. Con el fin de mejorar la adhesión entre la matriz y la carga, en una primera fase del estudio se evaluaron cuatro posibles agentes de acoplamiento con el objetivo de determinar cuál era el más conveniente. Del análisis de los resultados obtenidos tras la realización de una caracterización térmica y mecánica completa de los compuestos elaborados, se concluyó que el blend tratado con el agente Poly(Ethylene-co-glycidil Methacrylate) (PEGM) era el que presentaba mejores características, ya que se aumentaba notoriamente la interface entre la matriz y la carga. Siendo que todos los agentes de acoplamiento se habían añadido en la proporción de un 10% de la carga, en esta segunda fase como se ha mencionado el objetivo ha sido establecer cuál es la proporción óptima en la que se debe añadir dicho agente de acoplamiento.Este estudio ha sido financiado por la Conselleria d'Educació, Cultura i Esport de la Generalitat Valenciana (Referencia: GV/2014/008).Montañés Muñoz, N.; Boronat Vitoria, T.; Fenollar Gimeno, OÁ.; García Sanoguera, D.; Samper Madrigal, MD. (2015). Determinación del porcentaje de agente de acoplamiento en composites de bioPE con carga lignocelulósica. Compobell, S.L. http://hdl.handle.net/10251/73468
    corecore