363 research outputs found

    Zeb2 regulates myogenic differentiation in pluripotent stem cells

    Get PDF
    Skeletal muscle differentiation is triggered by a unique family of myogenic basic helix-loop-helix transcription factors, including MyoD, MRF-4, Myf-5, and Myogenin. These transcription factors bind promoters and distant regulatory regions, including E-box elements, of genes whose expression is restricted to muscle cells. Other E-box binding zinc finger proteins target the same DNA response elements, however, their function in muscle development and regeneration is still unknown. Here, we show that the transcription factor zinc finger E-box-binding homeobox 2 (Zeb2, Sip-1, Zfhx1b) is present in skeletal muscle tissues. We investigate the role of Zeb2 in skeletal muscle differentiation using genetic tools and transgenic mouse embryonic stem cells, together with single-cell RNA-sequencing and in vivo muscle engraftment capability. We show that Zeb2 over-expression has a positive impact on skeletal muscle differentiation in pluripotent stem cells and adult myogenic progenitors. We therefore propose that Zeb2 is a novel myogenic regulator and a possible target for improving skeletal muscle regeneration. The non-neural roles of Zeb2 are poorly understood

    Tocilizumab or glucocorticoids treatment for patients with SARS-CoV-2 pneumonia: An observational study

    Get PDF
    Objective: To estimate the effect of tocilizumab or glucocorticoids in preventing death and intubation in patients hospitalized with SARS-CoV-2 pneumonia.Methods: This was a retrospective cohort study enrolling all consecutive patients hospitalized at Reggio Emilia AUSL between February the 11th and April 14th 2020 for severe COVID19 and treated with tocilizumab or glucocorticoids (at least 80 mg/day of methylprednisolone or equivalent for at least 3 days).The primary outcome was death within 30 days from the start of the considered therapies. The secondary outcome was a composite outcome of death and/or intubation. All patients have been followed-up until May 19th 2020, with a follow-up of at least 30 days for every patient. To reduce confounding due to potential non-comparability of the two groups, those receiving tocilizumab and those receiving glucocorticoids, a propensity score was calculated as the inverse probability weighting of receiving treatment conditional on the baseline covariates.Results and conclusion: Therapy with tocilizumab alone was associated with a reduction of deaths (OR 0.49, 95% CI 0.21-1.17) and of the composite outcome death/intubation (OR 0.35, 95% CI 0.13-0.90) compared to glucocorticoids alone. Nevertheless, this result should be cautiously interpreted due to a potential prescription bias.(c) 2021 Sociedade Brasileira de Infectologia. Published by Elsevier Espana, S.L.U. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/

    Activator Protein-1 Transcriptional Activity Drives Soluble Micrograft-Mediated Cell Migration and Promotes the Matrix Remodeling Machinery

    Get PDF
    Impaired wound healing and tissue regeneration have severe consequences on the patient's quality of life. Micrograft therapies are emerging as promising and affordable alternatives to improve skin regeneration by enhancing the endogenous wound repair processes. However, the molecular mechanisms underpinning the beneficial effects of the micrograft treatments remain largely unknown. In this study, we identified the active protein-1 (AP-1) member Fos-related antigen-1 (Fra-1) to play a central role in the extracellular signal-regulated kinase- (ERK-) mediated enhanced cell migratory capacity of soluble micrograft-treated mouse adult fibroblasts and in the human keratinocyte cell model. Accordingly, we show that increased micrograft-dependent in vitro cell migration and matrix metalloprotease activity is abolished upon inhibition of AP-1. Furthermore, soluble micrograft treatment leads to increased expression and posttranslational phosphorylation of Fra-1 and c-Jun, resulting in the upregulation of wound healing-associated genes mainly involved in the regulation of cell migration. Collectively, our work provides insights into the molecular mechanisms behind the cell-free micrograft treatment, which might contribute to future advances in wound repair therapies

    Long-term miR-669a therapy alleviates chronic dilated cardiomyopathy in dystrophic mice.

    Get PDF
    BACKGROUND: Dilated cardiomyopathy (DCM) is a leading cause of chronic morbidity and mortality in muscular dystrophy (MD) patients. Current pharmacological treatments are not yet able to counteract chronic myocardial wastage, thus novel therapies are being intensely explored. MicroRNAs have been implicated as fine regulators of cardiomyopathic progression. Previously, miR-669a downregulation has been linked to the severe DCM progression displayed by Sgcb-null dystrophic mice. However, the impact of long-term overexpression of miR-669a on muscle structure and functionality of the dystrophic heart is yet unknown. METHODS AND RESULTS: Here, we demonstrate that intraventricular delivery of adeno-associated viral (AAV) vectors induces long-term (18 months) miR-669a overexpression and improves survival of Sgcb-null mice. Treated hearts display significant decrease in hypertrophic remodeling, fibrosis, and cardiomyocyte apoptosis. Moreover, miR-669a treatment increases sarcomere organization, reduces ventricular atrial natriuretic peptide (ANP) levels, and ameliorates gene/miRNA profile of DCM markers. Furthermore, long-term miR-669a overexpression significantly reduces adverse remodeling and enhances systolic fractional shortening of the left ventricle in treated dystrophic mice, without significant detrimental consequences on skeletal muscle wastage. CONCLUSIONS: Our findings provide the first evidence of long-term beneficial impact of AAV-mediated miRNA therapy in a transgenic model of severe, chronic MD-associated DCM

    Impact of atrial fibrillation in critically ill patients admitted to a stepdown unit

    Get PDF
    Background: Limited data are available on the clinical course of patients with history of atrial fibrillation (AF) when admitted in an intensive care environment. We aimed to describe the occurrence of major adverse events in AF patients admitted to a stepdown care unit (SDU) and to analyse clinical factors associated with outcomes, impact of dicumarolic oral anticoagulant (OAC) therapy impact and performance of clinical risk scores in this setting. Materials and methods: Single-centre, observational retrospective analysis on a population of subjects with AF history admitted to a SDU. Therapeutic failure (composite of transfer to ICU or death) was considered the main study outcome. Occurrence of stroke and major bleeding (MH) was considered as secondary outcomes. The performance of clinical risk scores was evaluated. Results: A total of 1430 consecutive patients were enrolled. 194 (13.6%) reported the main outcome. Using multivariate logistic regression, age (odds ratio [OR]: 1.03, 95% confidence interval [CI]: 1.01-1.05), acute coronary syndrome (OR:3.10, 95% CI: 1.88-5.12), cardiogenic shock (OR:10.06, 95% CI: 5.37-18.84), septic shock (OR:5.19,95%CI:3.29-18.84), acute respiratory failure (OR:2.49, 95% CI: 1.67-3.64) and OAC use (OR: 1.61, 95% CI: 1.02-2.55) were independently associated with main outcome. OAC prescription was associated with stroke risk reduction and to both MH and main outcome risk increase. CHA2 DS2 -VASc (c-index: 0.545, P = .117 for stroke) and HAS-BLED (c-index:0.503, P = .900 for MH) did not significantly predict events occurrence. Conclusions: In critically ill AF patients admitted to a SDU, adverse outcomes are highly prevalent. OAC use is associated to an increased risk of therapeutic failure, clinical scores seem unhelpful in predicting stroke and MH, suggesting a highly individualized approach in AF management in this setting

    Zeb2 regulates myogenic differentiation in pluripotent stem cells

    Get PDF
    Skeletal muscle differentiation is triggered by a unique family of myogenic basic helix-loop-helix transcription factors, including MyoD, MRF-4, Myf-5, and Myogenin. These transcription factors bind promoters and distant regulatory regions, including E-box elements, of genes whose expression is restricted to muscle cells. Other E-box binding zinc finger proteins target the same DNA response elements, however, their function in muscle development and regeneration is still unknown. Here, we show that the transcription factor zinc finger E-box-binding homeobox 2 (Zeb2, Sip-1, Zfhx1b) is present in skeletal muscle tissues. We investigate the role of Zeb2 in skeletal muscle differentiation using genetic tools and transgenic mouse embryonic stem cells, together with single-cell RNA-sequencing and in vivo muscle engraftment capability. We show that Zeb2 over-expression has a positive impact on skeletal muscle differentiation in pluripotent stem cells and adult myogenic progenitors. We therefore propose that Zeb2 is a novel myogenic regulator and a possible target for improving skeletal muscle regeneration. The non-neural roles of Zeb2 are poorly understood

    Predictive factors of clinical outcomes in patients with COVID-19 treated with tocilizumab: A monocentric retrospective analysis

    Get PDF
    Objective The aim of this retrospective observational study is to analyse clinical, serological and radiological predictors of outcome in patients with COVID-19 pneumonia treated with tocilizumab, providing clinical guidance to its use in real-life. Method This is a retrospective, monocentric observational cohort study. All consecutive patients hospitalized between February the 11th and April 14th 2020 for severe COVID-19 pneumonia at Reggio Emilia AUSL and treated with tocilizumab were enrolled. The patient's clinical status was recorded every day using the WHO ordinal scale for clinical improvement. Response to treatment was defined as an improvement of one point (from the status at the beginning of tocilizumab treatment) during the follow-up on this scale. Bivariate association of main patients' characteristics with outcomes was explored by descriptive statistics and Fisher or Kruskal Wallis tests (respectively for qualitative or quantitative variables). Each clinically significant predictor was checked by a loglikelihood ratio test (in univariate logistic models for each of the considered outcomes) against the null model. Results A total of 173 patients were included. Only hypertension, the use of angiotensin-converting enzyme inhibitors, PaO2/FiO2, respiratory rate and C-reactive protein were selected for the multivariate analysis. In the multivariable model, none of them was significantly associated with response. Conclusions Evaluating a large number of clinical variables, our study did not find new predictors of outcome in COVID19 patients treated with tocilizumab. Further studies are needed to investigate the use of tocilizumab in COVID-19 and to better identify clinical phenotypes which could benefit from this treatment

    Generation of human motor units with functional neuromuscular junctions in microfluidic devices

    Get PDF
    Neuromuscular junctions (NMJs) are specialized synapses between the axon of the lower motor neuron and the muscle facilitating the engagement of muscle contraction. In motor neuron disorders, such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), NMJs degenerate, resulting in muscle atrophy and progressive paralysis. The underlying mechanism of NMJ degeneration is unknown, largely due to the lack of translatable research models. This study aimed to create a versatile and reproducible in vitro model of a human motor unit with functional NMJs. Therefore, human induced pluripotent stem cell (hiPSC)-derived motor neurons and human primary mesoangioblast (MAB)-derived myotubes were co-cultured in commercially available microfluidic devices. The use of fluidically isolated micro-compartments allows for the maintenance of cell-specific microenvironments while permitting cell-to-cell contact through microgrooves. By applying a chemotactic and volumetric gradient, the growth of motor neuron-neurites through the microgrooves promoting myotube interaction and the formation of NMJs were stimulated. These NMJs were identified immunocytochemically through co-localization of motor neuron presynaptic marker synaptophysin (SYP) and postsynaptic acetylcholine receptor (AChR) marker α-bungarotoxin (Btx) on myotubes and characterized morphologically using scanning electron microscopy (SEM). The functionality of the NMJs was confirmed by measuring calcium responses in myotubes upon depolarization of the motor neurons. The motor unit generated using standard microfluidic devices and stem cell technology can aid future research focusing on NMJs in health and disease

    Both ghrelin deletion and unacylated ghrelin overexpression preserve muscles in aging mice

    Get PDF
    Sarcopenia, the decline in muscle mass and functionality during aging, might arise from age-associated endocrine dysfunction. Ghrelin is a hormone circulating in both acylated (AG) and unacylated (UnAG) forms with antiatrophic activity on skeletal muscle. Here, we show that not only lifelong overexpression of UnAG (Tg) in mice, but also the deletion of ghrelin gene (Ghrl KO) attenuated the age-associated muscle atrophy and functionality decline, as well as systemic inflammation. Yet, the aging of Tg and Ghrl KO mice occurs with different dynamics: while old Tg mice seem to preserve the characteristics of young animals, Ghrl KO mice features deteriorate with aging. However, young Ghrl KO mice show more favorable traits compared to WT animals that result, on the whole, in better performances in aged Ghrl KO animals. Treatment with pharmacological doses of UnAG improved muscle performance in old mice without modifying the feeding behavior, body weight, and adipose tissue mass. The antiatrophic effect on muscle mass did not correlate with modifications of protein catabolism. However, UnAG treatment induced a strong shift towards oxidative metabolism in muscle. Altogether, these data confirmed and expanded some of the previously reported findings and advocate for the design of UnAG analogs to treat sarcopenia
    corecore