3,973 research outputs found

    Exclusive photoproduction of quarkonium in proton-nucleus collisions at energies available at the CERN Large Hadron Collider

    Get PDF
    In this work we investigate the coherent photoproduction of psi(1S), psi(2S) and Upsilon (1S) states in the proton-nucleus collisions in the LHC energies. Predictions for the rapidity distributions are presented using the color dipole formalism and including saturation effects that are expected to be relevant at high energies. Calculations are done at the energy 5.02 TeV and also for the next LHC run at 8.8 TeV in proton-lead mode. Discussion is performed on the main theoretical uncertainties associated to the calculations.Comment: 05 pages, 5 figures. Version to be published in Phys. Rev.

    Light vector meson photoproduction in hadron-hadron and nucleus-nucleus collisions at the energies available at the CERN Large Hadron Collider

    Get PDF
    In this work we analyse the theoretical uncertainties on the predictions for the photoproduction of light vector mesons in coherent pp, pA and AA collisions at the LHC energies using the color dipole approach. In particular, we present our predictions for the rapidity distribution for rh0 and phi photoproduction and perform an analysis on the uncertainties associated to the choice of vector meson wavefunctionand the phenomenological models for the dipole cross section. Comparison is done with the recent ALICE analysis on coherent production of rho at 2.76 TeV in PbPb collisions.Comment: 07 pages, 6 figures. Version to be published in Phys. Rev.

    Static and dynamic properties of vortices in anisotropic magnetic disks

    Full text link
    We investigate the effect of the magnetic anisotropy (KzK_z) on the static and dynamic properties of magnetic vortices in small disks. Our micromagnetic calculations reveal that for a range of KzK_z there is an enlargement of the vortex core. We analyze the influence of KzK_z on the dynamics of the vortex core magnetization reversal under the excitation of a pulsed field. The presence of KzK_z, which leads to better resolved vortex structures, allows us to discuss in more details the role played by the in-plane and perpendicular components of the gyrotropic field during the vortex-antivortex nucleation and annihilation.Comment: 4 pages, 4 figure

    Neutral-current neutrino reactions in the supernova environment

    Get PDF
    We study the neutral-current neutrino scattering for four nuclei in the iron region. We evaluate the cross sections for the relevant temperatures during the supernova core collapse and derive Gamow-Teller distributions from large-scale shell-model calculations. We show that the thermal population of the excited states significantly enhances the cross sections at low neutrino energies. Calculations of the outgoing neutrino spectra indicate the prospect of neutrino upscattering at finite temperatures. Both results are particularly notable in even-even nuclei.Comment: 14 pages, 4 figures, accepted in Phys. Lett. B

    One-loop conformal anomaly in an implicit momentum space regularization framework

    Full text link
    In this paper we consider matter fields in a gravitational background in order to compute the breaking of the conformal current at one-loop order. Standard perturbative calculations of conformal symmetry breaking expressed by the non-zero trace of the energy-momentum tensor have shown that some violating terms are regularization dependent, which may suggest the existence of spurious breaking terms in the anomaly. Therefore, we perform the calculation in a momentum space regularization framework in which regularization dependent terms are judiciously parametrized. We compare our results with those obtained in the literature and conclude that there is an unavoidable arbitrariness in the anomalous term R\Box R.Comment: in European Physical Journal C, 201
    corecore