36 research outputs found

    Chemical Synthesis at Surfaces with Atomic Precision: Taming Complexity and Perfection

    Get PDF
    Scanning probe microscopy (SPM) is a powerful tool to study the structure and dynamics of molecules at surfaces and interfaces as well as to precisely manipulate atoms and molecules by applying an external force, by inelastic electron tunneling, or by means of an electric field. The rapid development of these SPM manipulation modes made it possible to achieve fine‐control over fundamental processes in the physics of interfaces as well as chemical reactivity, such as adsorption, diffusion, bond formation, and bond dissociation with precision at the single atom/molecule level. Their controlled use for the fabrication of atomic‐scale structures and synthesis of new, perhaps uncommon, molecules with programmed properties are reviewed. Opportunities and challenges towards the development of complex chemical systems are discussed, by analyzing potential future impacts in nanoscience and nanotechnology.journal articlereview2019 Dec 192019 11 28importe

    Controlling Ambipolar Transport and Voltage Inversion in Solution-Processed Thin-Film Devices through Polymer Blending

    Get PDF
    Ambipolar semiconductors are attracting a great interest as building blocks for photovoltaics and logic applications. Field-effect transistors built on solution-processable ambipolar materials hold strong promise for the engineering of large-area low-cost logic circuits with a reduced number of devices components. Such devices still suffer from a number of obstacles including the challenging processing, the low Ion/Ioff, the unbalanced mobility, and the low gain in complementary metal–oxide–semiconductor (CMOS)-like circuits. Here, we demonstrate that the simple approach of blending commercially available n- and p-type polymers such as P(NDI2OD-T2), P3HT, PCD-TPT, PDVT-8, and IIDDT-C3 can yield high-performing ambipolar field-effect transistors with balanced mobilities and Ion/Ioff > 10^7. Each single component was studied separately and upon blending by means of electrical characterization, ambient ultraviolet photoelectron spectroscopy, atomic force microscopy, and grazing incidence wide angle X-ray scattering to unravel the correlation between the morphology/structure of the semiconducting films and their functions. Blends of n- and p-type semiconductors were used to fabricate CMOS-like inverter circuits with state-of-the-art gains over 160 in the case of P(NDI2OD-T2) blended with PDVT-8. Significantly, our blending approach was successful in producing semiconducting films with balanced mobilities for each of the four tested semiconductor blends, although the films displayed different structural and morphological features. Our strategy, which relies on establishing a correlation between ambipolar performances, film morphology, molecular structure, and blending ratio, is extremely efficient and versatile; thus it could be applied to a wide range of polymers or solution processable small molecules

    Chemical sensing with 2D materials

    Get PDF
    During the last decade, two-dimensional materials (2DMs) have attracted great attention due to their unique chemical and physical properties, which make them appealing platforms for diverse applications in opto-electronic devices, energy generation and storage, and sensing. Among their various extraordinary properties, 2DMs possess high surface area-to-volume ratios and ultra-high surface sensitivity to the environment, which are key characteristics for applications in chemical sensing. Furthermore, 2DMs’ superior electrical and optical properties, combined with their excellent mechanical characteristics such as robustness and flexibility, make these materials ideal components for the fabrication of a new generation of high-performance chemical sensors. Depending on the specific device, 2DMs can be tailored to interact with various chemical species at the non-covalent level, making them powerful platforms for fabricating devices exhibiting a high sensitivity towards detection of various analytes including gases, ions and small biomolecules. Here, we will review the most enlightening recent advances in the field of chemical sensors based on atomically-thin 2DMs and we will discuss the opportunities and the challenges towards the realization of novel hybrid materials and sensing devices

    Self-Assembly of Functionalized Oligothiophene into Hygroscopic Fibers: Fabrication of Highly Sensitive and Fast Humidity Sensors

    Get PDF
    A new symmetric oligothiophene exposing tetraethylene glycol (TEG)‐based side‐chains is designed and synthesized. This molecule is found to self‐assemble in solution forming supramolecular fibers, via π–π stacking between the conjugated oligothiophene backbones, which are phase segregated on the sub‐nanometer scale from the TEG side‐groups. The delocalization of the charges through the oligothiophene π–π stack ensures efficient charge transport while the hygroscopic shell, decorating the surface of the fibrillar structures, determines a certain affinity for polar molecules. Upon exposure to humidity, under environmental conditions, such supramolecular architectures are capable of reversibly absorbing and desorbing water molecules. Absorption of water molecules, due to increased environmental humidity, causes a fast and reproducible increase of the electrical current through the fibers by a factor 100 from 15% to 90% relative humidity, as measured in 2‐terminal devices. Such process is extremely fast, taking place in less than 45 ms. The humidity‐responsive characteristics of the presented oligothiophene‐based fibers can be exploited for the facile fabrication of high‐performances and solution‐processable electrical resistive humidity sensors

    Ultrafast Delamination of Graphite into High-Quality Graphene Using Alternating Currents

    Get PDF
    To bridge the gap between laboratory‐scale studies and commercial applications, mass production of high quality graphene is essential. A scalable exfoliation strategy towards the production of graphene sheets is presented that has excellent yield (ca. 75 %, 1–3 layers), low defect density (a C/O ratio of 21.2), great solution‐processability, and outstanding electronic properties (a hole mobility of 430 cm2 V−1 s−1). By applying alternating currents, dual exfoliation at both graphite electrodes enables a high production rate exceeding 20 g h−1 in laboratory tests. As a cathode material for lithium storage, graphene‐wrapped LiFePO4 particles deliver a high capacity of 167 mAh g−1 at 1 C rate after 500 cycles

    Graphene Oxide Hybrid with Sulfur–Nitrogen Polymer for High-Performance Pseudocapacitors

    Get PDF
    Toward the introduction of fast faradaic pseudocapacitive behavior and the increase of the specific capacitance of carbon-based electrodes, we covalently functionalized graphene oxide with a redox active thiourea-formaldehyde polymer, yielding a multifunctional hybrid system. The multiscale physical and chemical characterization of the novel 3-dimensional hybrid revealed high material porosity with high specific surface area (402 m2 g–1) and homogeneous element distribution. The presence of multiple functional groups comprising sulfur, nitrogen, and oxygen provide additional contribution of Faradaic redox reaction in supercapacity performance, leading to a high effective electrochemical pseudocapacitance. Significantly, our graphene-based 3-dimensional thiourea-formaldehyde hybrid exhibited specific capacitance as high as 400 F g–1, areal capacitance of 160 mF cm–2, and an energy density of 11.1 mWh cm–3 at scan rate of 1 mV s–1 with great capacitance retention (100%) after 5000 cycles at scan rate of 100 mV s–1

    Thermal insulation with 2D materials: liquid phase exfoliated vermiculite functional nanosheets

    Get PDF
    Phyllosilicates are layered materials possessing unique thermal properties, commonly exploited in their multilayered crystalline form as refractory insulators and heating elements. A more versatile use of such materials, however, would require their existence in the form of inks and dispersions ready to be patterned. Within this framework, the liquid-phase exfoliation of low-cost, low-purity materials such as bulk multiphasic minerals and powders represents an economically advantageous approach for the production of 2D nano-sized objects with a defined composition, size and morphology. Here, ultrasound-assisted exfoliation and shear-mixing of a multi-phasic vermiculite in mild acidic aqueous solutions were employed to successfully obtain dispersions of mono- and few-layer thick clay nanosheets. The exfoliated materials were thoroughly investigated through granulometry, X-Ray Diffraction (XRD), specific surface area measurements and AFM imaging. Despite the fact that the lateral size and the thickness distribution of exfoliated flakes obtained with the two approaches appear similar, the ultrasound-assisted exfoliation process yielded a larger amount of mono- and bi-layer thick flakes as well as materials with a higher specific surface area. XRD analysis revealed that the use of ultrasound waves in an acidic environment results in the complete exfoliation of the vermiculite layer, whereas the use of shear forces under the same conditions results in the exfoliation of hydrobiotite and mica crystalline phases. Thermal conductivity measurements provided clear evidence on how the structural changes – arising from the exfoliation process – have a direct impact on the properties of the exfoliated clay. Remarkably, compared to the raw material, the thermal conductivity of the exfoliated material decreases by 25%, reaching the ultra-low thermal conductivity regime (<0.1 W m−1 K−1). Our approach may enable in the future the generation of patterns of thermal insulators onto different surfaces by applying vermiculite nanosheets in the form of dispersions and printable inks

    Self-Suspended Nanomesh Scaffold for Ultrafast Flexible Photodetectors Based on Organic Semiconducting Crystals

    Get PDF
    Self‐standing nanostructures are of fundamental interest in materials science and nanoscience and are widely used in (opto‐)electronic and photonic devices as well as in micro‐electromechanical systems. To date, large‐area and self‐standing nanoelectrode arrays assembled on flexible substrates have not been reported. Here the fabrication of a hollow nanomesh scaffold on glass and plastic substrates with a large surface area over 1 mm2 and ultralow leakage current density (≈1–10 pA mm−2 @ 2 V) across the empty scaffold is demonstrated. Thanks to the continuous sub‐micrometer space formed in between the nanomesh and the bottom electrode, highly crystalline and dendritic domains of 6,13‐bis(triisopropylsilylethinyl)pentacene growing within the hollow cavity can be observed. The high degree of order at the supramolecular level leads to efficient charge and exciton transport; the photovoltaic detector supported on flexible polyethylene terephthalate substrates exhibits an ultrafast photoresponse time as short as 8 ns and a signal‐to‐noise ratio approaching 10^5. Such a hollow scaffold holds great potential as a novel device architecture toward flexible (opto‐)electronic applications based on self‐assembled micro/nanocrystals

    Current crowding issues on nanoscale planar organic transistors for spintronic applications

    Get PDF
    The predominance of interface resistance makes current crowding ubiquitous in short channel organic electronics devices but its impact on spin transport has never been considered. We investigate electrochemically doped nanoscale PBTTT short channel devices and observe the smallest reported values of crowding lengths, found for sub-100 nm electrodes separation. These observed values are nevertheless exceeding the spin diffusion lengths reported in the literature. We discuss here how current crowding can be taken into account in the framework of the Fert–Jaffrès model of spin current propagation in heterostructures, and predict that the anticipated resulting values of magnetoresistance can be significantly reduced. Current crowding therefore impacts spin transport applications and interpretation of the results on spin valve devices

    MoS2 nanosheets via electrochemical lithium-ion intercalation under ambient conditions

    Get PDF
    Two-dimensional (2D) transition metal dichalcogenides (TMDs) are continuously attracting attention for both fundamental studies and technological applications. The physical and chemical properties of ultrathin TMD sheets are extraordinarily different from those of the corresponding bulk materials and for this reason their production is a stimulating topic, especially when the preparation method enables to obtain a remarkable yield of nanosheets with large area and high quality. Herein, we present a fast (<1 h) electrochemical exfoliation of molybdenum disulfide (MoS2) via lithium-ion intercalation, by using a solution of lithium chloride in dimethyl sulfoxide (DMSO). Unlike the conventional intercalation methods based on dangerous organolithium compounds, our approach leads to the possibility to obtain mono-, bi- and tri-layer thick MoS2 nanosheets with a large fraction of the semiconducting 2H phase (∼60%), as estimated by X-ray photoelectron spectroscopy (XPS). The electrical properties of the exfoliated material were investigated through the fabrication and characterization of back-gated field-effect transistors (FETs) based on individual MoS2 nanosheets. As-fabricated devices displayed unipolar semiconducting behavior (n-type) with field-effect mobility µFE ≤ 10−3 cm2 V−1 s−1 and switching ratio Ion/Ioff ≤ 10, likely limited by 1T/2H polymorphism and defects (e.g. sulfur vacancies) induced during the intercalation/exfoliation process. A significant enhancement of the electrical performances could be achieved through a combination of vacuum annealing (150 °C) and sulfur-vacancy healing with vapors of short-chain alkanethiols, resulting in µFE up to 2 × 10−2 cm2 V−1 s−1 and Ion/Ioff ≈ 100. Our results pave the way towards the fast preparation – under ambient conditions – of semiconducting MoS2 nanosheets, suitable for application in low cost (opto-)electronic devices
    corecore