50 research outputs found

    Electronic characterization of supramolecular materials at the nanoscale by Conductive Atomic Force and Kelvin Probe Force microscopies

    Get PDF
    The performances of organic (opto)electronic devices strongly depend on the order at the supramolecular level. Unraveling the relationship between structural and electronic properties in nanoscale architectures is therefore key for both fundamental studies and technological applications. C-AFM and KPFM provide an immediate correlation between the morphology of a material and its electrical/electronic properties such as local conductivity and surface potential. Thus, they are unrivaled techniques offering crucial information toward the optimization of the real devices, ultimately providing an important contribution to a hot field at the cross-road between nanoscience and organic (opto)electronics. Herein we focus on the application of C-AFM and KPFM on self-assembled monolayers (SAMs), organic (semi)conducting materials for thin film transistors (TFTs) and organic blends for photovoltaics (OSCs)

    A life-cycle assessment of poly-hydroxybutyrate extraction from microbial biomass using dimethylcarbonate

    Get PDF
    Poly-hydroxyalkanoates are an example of biodegradable and biocompatible polymers, produced from renewable raw materials. With respect to other bioplastics the market share of poly-hydroxyalkanoates is still limited because of their commercial costs. To develop more cost-effective processes, a multilevel approach is usually undertaken combining innovative, cheaper and more effective microbial cultivation with safe and cheap extraction and purification methodologies. This study assesses the potential life cycle environmental impacts related to a novel protocol poly-hydroxyalkanoates extraction based on dimethyl carbonate in comparison to the use of halogenated hydrocarbons (in particular 1,2 dicholoroethane). Four scenarios are analysed for the dimethyl carbonate protocol considering: extraction from microbial slurry or from dried biomass, and recovery by solvent evaporation or polymer precipitation. The life cycle assessment demonstrates that the environmental performances of dimethyl carbonate-based protocols are far better than those of the most comparative process using the halogenated hydrocarbons. The scenario that foresees the extraction of dried biomass and recovers solvent by evaporation appears to be the most promising in terms of environmental sustainability performance

    A new bio-based organogel for the removal of wax coating from indoor bronze surfaces

    Get PDF
    Abstract In this research, we propose an advanced system for the cleaning of wax-based coatings applied on indoor bronzes. To this aim we developed a new kind of eco-friendly gel based on PHB (poly-3-hydroxybutyrate) used as thickening agent, biodiesel (BD) and dimethyl carbonate (DMC). BD is a mixture of methyl esters obtained from palm oil, which acts as cleaning agent while DMC was added as additional solvent to partially solubilize PHB and forming a gelly phase. For the first time a PHB-based gel obtained by mixing two solvents with different proprieties was proposed, expanding the range of possible formulations, that can be used according to the specific restoration purpose. After the preliminary characterization of chemical and physical properties of the gel, an ad hoc analytical protocol was implemented to evaluate both the cleaning efficiency and the release of residues on the treated surfaces. Standard samples were prepared following ancient recipes and submitted to spectroscopic and chromatographic analysis before and after the cleaning procedures. Finally, the performances of PHB-DMC/BD gel were assessed on a real case of study presenting a wax-based coating: the Pulpito della passione attributed to Donatello and dated back to 1460. In situ analysis demonstrated the high cleaning efficiency of the proposed systems also for the removal of aged coatings

    Lezione 2 - Struttura Biomasse

    No full text

    Lezione 5- algorefinery

    No full text

    Lezione 4 - Bioraffinerie

    No full text

    Update biodiesel

    No full text

    REACH regulation

    No full text

    Lezione 6 - Platform chemicals

    No full text

    Lezione 5 - Algoraffineria

    No full text
    corecore