10 research outputs found
Mesoscopic 3D Charge Transport in Solution-Processed Graphene-Based Thin Films: A Multiscale Analysis
Graphene and related 2D material (GRM) thin films consist of 3D assembly of billions of 2D nanosheets randomly distributed and interacting via van der Waals forces. Their complexity and the multiscale nature yield a wide variety of electrical characteristics ranging from doped semiconductor to glassy metals depending on the crystalline quality of the nanosheets, their specific structural organization ant the operating temperature. Here, the charge transport (CT) mechanisms are studied that are occurring in GRM thin films near the metal-insulator transition (MIT) highlighting the role of defect density and local arrangement of the nanosheets. Two prototypical nanosheet types are compared, i.e., 2D reduced graphene oxide and few-layer-thick electrochemically exfoliated graphene flakes, forming thin films with comparable composition, morphology and room temperature conductivity, but different defect density and crystallinity. By investigating their structure, morphology, and the dependence of their electrical conductivity on temperature, noise and magnetic-field, a general model is developed describing the multiscale nature of CT in GRM thin films in terms of hopping among mesoscopic bricks, i.e., grains. The results suggest a general approach to describe disordered van der Waals thin films
Introduction to \u27Chemistry of 2D materials: Graphene and beyond\u27
International audienceA graphical abstract is available for this conten
Au (111) Surface Contamination in Ambient Conditions: Unravelling the Dynamics of the Work Function in Air
Gold is an inert noble metal displaying superior chemical stability that renders it a suitable component for the manufacturing of electrodes for various types of devices. Despite being widely employed, the variation of gold surface properties occurring upon the material's exposure to ambient conditions have been often disregarded. While it is well-known that the contamination of a metallic surface can have a dramatic impact on its properties, the process of contamination itself is poorly understood. Changes of the work function by fractions of an electron-volt are commonly observed in gold surfaces that are processed at ambient laboratory conditions, but an exhaustive comprehension and control of this phenomenon are still lacking. Here, a multiscale characterization of Au(111) surfaces aiming to unravel the surface dynamics underlying the air contamination is presented. The visualization of the adventitious carbon contamination on Au(111) surface by atomic force microscopy is key to rationalize the mechanisms of surface reorganization ruling the change of Au work function between 5.25 and 4.75 eV by solely changing the storage conditions. Such a huge variation must be taken into account when optimizing the Au surface for both controlling its fundamental surface and interfacial physical processes, as well as its functional applications
Supramolecular engineering of guanine-based self-assembled architectures at surfaces and interfaces
The self-assembly of small organic molecules interacting via non-covalent forces is a viable approach towards the generation of highly ordered nanostructured materials. Among various molecular building blocks, supramolecular architectures with specific motifs can be obtained trough self-association of natural nucleobases on flat surfaces. Such structures can be used as scaffolds to position electrically/optically active units in pre-determined locations in 2D, thereby paving the way towards materials suitable for a wide range of applications, e.g. in electronic, spintronics and optical devices
Optical Input/Electrical Output Memory Elements based on a Liquid Crystalline Azobenzene Polymer
Responsive polymer materials can change their properties when subjected to external stimuli. In this work, thin films of thermotropic poly(metha)acrylate/azobenzene polymers are explored as active layer in light-programmable, electrically readable memories. The memory effect is based on the reversible modifications of the film morphology induced by the photoisomerization of azobenzene mesogenic groups. When the film is in the liquid crystalline phase, the trans ? cis isomerization induces a major surface reorganization on the mesoscopic scale that is characterized by a reduction in the effective thickness of the film. The film conductivity is measured in vertical two-terminal devices in which the polymer is sandwiched between a Au contact and a liquid compliant E-GaIn drop. We demonstrate that the trans ? cis isomerization is accompanied by a reversible 100-fold change in the film conductance. In this way, the device can be set in a high- or low-resistance state by light irradiation at different wavelengths. This result paves the way toward the potential use of poly(metha)acrylate/azobenzene polymer films as active layer for optical input/electrical output memory elements
Surface-induced selection during in situ photoswitching at the solid/liquid interface
Here we report for the first time a submolecularly resolved scanning tunneling microscopy (STM) study at the solid/liquid interface of the insitu reversible interconversion between two isomers of a diarylethene photoswitch, that is, open and closed form, self-assembled on a graphite surface. Prolonged irradiation with UV light led to the insitu irreversible formation of another isomer as by-product of the reaction, which due to its preferential physisorption accumulates at the surface. By making use of a simple yet powerful thermodynamic model we provide a quantitative description for the observed surface-induced selection of one isomeric form
Influence of the supramolecular order on the electrical properties of 1D coordination polymers based materials
The generation, under self-assembly conditions, of coordination polymers on surface based combinations of a terpyridine-antracene-pyridine based tecton and Co(II) or Pd(II) cations is primarily governed by the coordination geometry of the metal center (octahedral and square planar respectively). While the octahedral Co(II) based polymer self-assembles in insulating films exhibiting randomly oriented crystalline domains, the planarity of Pd(II) based polymers leads to the formation of conductive p-p stacked fibrillar structures exhibiting anisotropically oriented domains. In the latter case, the favorable pi-pi and anthracene- anthracene wavefunction overlaps along the fiber direction are responsible for the large electronic couplings between adjacent chains, whereas small electronic couplings are instead found along individual polymer chains. These results provide important guidelines for the design of conductive metal coordination polymers, highlighting the fundamental role of both intra- as well as inter-chain interactions, thus opening up new perspectives towards their application in functional devices
Multiscale Charge Transport in van der Waals Thin Films: Reduced Graphene Oxide as a Case Study
Large area van der Waals (vdW) thin films are assembled materials consisting of a network of randomly stacked nanosheets. The multiscale structure and the two-dimensional (2D) nature of the building block mean that interfaces naturally play a crucial role in the charge transport of such thin films. While single or few stacked nanosheets (i.e., vdW heterostructures) have been the subject of intensive works, little is known about how charges travel through multilayered, more disordered networks. Here, we report a comprehensive study of a prototypical system given by networks of randomly stacked reduced graphene oxide 2D nanosheets, whose chemical and geometrical properties can be controlled independently, permitting to explore percolated networks ranging from a single nanosheet to some billions with room-temperature resistivity spanning from 10-5 to 10-1 ω\ub7m. We systematically observe a clear transition between two different regimes at a critical temperature T*: Efros-Shklovskii variable-range hopping (ES-VRH) below T∗ and power law behavior above. First, we demonstrate that the two regimes are strongly correlated with each other, both depending on the charge localization length ζ, calculated by the ES-VRH model, which corresponds to the characteristic size of overlapping sp2 domains belonging to different nanosheets. Thus, we propose a microscopic model describing the charge transport as a geometrical phase transition, given by the metal-insulator transition associated with the percolation of quasi-one-dimensional nanofillers with length ζ, showing that the charge transport behavior of the networks is valid for all geometries and defects of the nanosheets, ultimately suggesting a generalized description on vdW and disordered thin films
Self-Assembled Two-Dimensional Supramolecular Networks Characterized by Scanning Tunneling Microscopy and Spectroscopy in Air and under Vacuum
We combine ambient (air) and ultrahigh vacuum (UHV) scanning tunneling microscopy (STM) and spectroscopy (STS) investigations together with density functional theory (DFT) calculations to gain a subnanometer insight into the structure and dynamic of two-dimensional (2D) surface-supported molecular networks. The planar tetraferrocene-porphyrin molecules employed in this study undergo spontaneous self-assembly via the formation of hydrogen bonded networks at the gold substrate-solution interface. To mimic liquid phase ambient deposition conditions, film formation was accomplished in UHV by electro-spraying a solution of the molecule in chloroform onto an Au(111) substrate, thereby providing access to the full spectroscopic capabilities of STM that can be hardly attained under ambient conditions. We show that molecular assembly on Au (111) is identical in films prepared under the two different conditions, and in good agreement with the theoretical predictions. However, we observe the contrast found for a given STM bias condition to be different in ambient and UHV conditions despite the similarity of the structures, and we propose possible origins of the different imaging contrast. This approach could be valuable for the thorough characterization of surface systems that involve large molecules and are prepared mainly in ambient conditions
Analysis of External and Internal Disorder to Understand Band\u2010Like Transport in n\u2010Type Organic Semiconductors
Charge transport in organic semiconductors is notoriously extremely
sensitive to the presence of disorder, both internal and external (i.e., related to interactions with the dielectric layer), especially for n-type materials. Internal dynamic disorder stems from large thermal fluctuations both in intermolecular transfer integrals and (molecular) site energies in weakly interacting van
der Waals solids and sources transient localization of the charge carriers.
The molecular vibrations that drive transient localization typically operate
at low-frequency