843 research outputs found
Corporate reputation and organisational performance: an Australian study
PURPOSE - To test for a relationship between corporate reputation and financial performance, using Australian data. DESIGN/METHODOLOGY/APPROACH - Econometric modelling. FINDINGS - No causal relationship between corporate reputation and financial performance (in either direction) was found. This is contrary to some findings in other countries. Reputation may not have a significant impact on performance in Australia. There may be weaknesses in the existing measure of reputation, or the finding may be due to unobserved variability in the intervening variable of managerial exploitation of the reputation. RESEARCH LIMITATIONS/IMPLICATIONS - The findings may be specific to Australia. In Australia, the linkage between reputation and performance may be too small to be significant in the available sample. It is argued that in corporate practice the link between reputation and performance proceeds via strategy and competitive advantage. Having a reputation resource is not enough; it needs to be managed well and exploited if it is to yield financial results. More work is needed to establish reliable measures of reputation. ORIGINALITY/VALUE - It is the first known study to investigate the link on Australian data. The discussion of the findings raises issues for the measurement and management of reputation
Measurement and Effects of the Magnetic Hysteresis on the LHC Crossing Angle and Separation Bumps
The superconducting orbit corrector magnets (MCBC, MCBY and MCBX) in the Large Hadron Collider (LHC) at CERN will be used to generate parallel separation and crossing angles at the interaction points during the different phases that will bring the LHC beams into collision. However, the field errors generated by the inherent hysteresis in the operation region of the orbit correctors may lead to unwanted orbit perturbations that could have a critical effect on luminosity. This paper presents the results obtained from dedicated cryogenic measurements on the orbit correctors and the resulting simulations performed to quantify the impact of the hysteresis on the LHC orbit
Co-Management of COVID-19 and heart failure during the COVID-19 pandemic. lessons learned
The COVID pandemic has brought many new challenges worldwide, which has impacted on patients with chronic conditions. There is an increasing evidence base suggesting an interaction between chronic heart failure (HF) and COVID-19, and in turn the prognostic impact of co-existence of the two conditions. Patients with existing HF appear more prone to develop severe complications on contracting COVID-19, but the exact prevalence in patients with mild symptoms of COVID-19 not requiring hospital admission is poorly investigated. In addition, hospitalization rates for acute HF over the pandemic period appear reduced compared to previous periods. Several key issues remain rather unaddressed and, importantly, a specific algorithm focused on diagnostic differentiation between HF and acute respiratory distress syndrome, a severe complication of COVID-19, is still lacking. Furthermore, recent data suggests potential interaction existing between HF treatment and some anti-viral anti-inflammatory drugs prescribed during the infection, raising some doubts about a universal treatment strategy for all patients with COVID-19. With this manuscript, we aim to review the current literature in this field in light of growing understanding of COVID-19 in the setting of the HF population, its associated morbidity and mortality burden, and the impact on healthcare systems. We hope that this may stimulate a discussion to guarantee a better, more tailored delivery of care for patients with HF in the setting of concomitant COVID-19 infection
Higher-order nonlinear modes and bifurcation phenomena due to degenerate parametric four-wave mixing
We demonstrate that weak parametric interaction of a fundamental beam with
its third harmonic field in Kerr media gives rise to a rich variety of families
of non-fundamental (multi-humped) solitary waves. Making a comprehensive
comparison between bifurcation phenomena for these families in bulk media and
planar waveguides, we discover two novel types of soliton bifurcations and
other interesting findings. The later includes (i) multi-humped solitary waves
without even or odd symmetry and (ii) multi-humped solitary waves with large
separation between their humps which, however, may not be viewed as bound
states of several distinct one-humped solitons.Comment: 9 pages, 17 figures, submitted to Phys. Rev.
Gravitational waves from Sco X-1: A comparison of search methods and prospects for detection with advanced detectors
The low-mass X-ray binary Scorpius X-1 (Sco X-1) is potentially the most
luminous source of continuous gravitational-wave radiation for interferometers
such as LIGO and Virgo. For low-mass X-ray binaries this radiation would be
sustained by active accretion of matter from its binary companion. With the
Advanced Detector Era fast approaching, work is underway to develop an array of
robust tools for maximizing the science and detection potential of Sco X-1. We
describe the plans and progress of a project designed to compare the numerous
independent search algorithms currently available. We employ a mock-data
challenge in which the search pipelines are tested for their relative
proficiencies in parameter estimation, computational efficiency, robust- ness,
and most importantly, search sensitivity. The mock-data challenge data contains
an ensemble of 50 Scorpius X-1 (Sco X-1) type signals, simulated within a
frequency band of 50-1500 Hz. Simulated detector noise was generated assuming
the expected best strain sensitivity of Advanced LIGO and Advanced VIRGO ( Hz). A distribution of signal amplitudes was then
chosen so as to allow a useful comparison of search methodologies. A factor of
2 in strain separates the quietest detected signal, at
strain, from the torque-balance limit at a spin frequency of 300 Hz, although
this limit could range from (25 Hz) to (750 Hz) depending on the unknown frequency of Sco X-1. With future
improvements to the search algorithms and using advanced detector data, our
expectations for probing below the theoretical torque-balance strain limit are
optimistic.Comment: 33 pages, 11 figure
Lead Speciation in the Dusts Emitted from Non-Ferrous Metallurgy Processes
The paper presents results for the speciation analysis of lead in dusts derived from dedusting of technological gasses from metallurgical processes of non-ferrous metals with different elementary content, made in accordance with two equal sequential extractions. Analytical procedure A provided possibilities for determination of fraction of Pb2+, metallic lead and fraction containing mainly lead sulfides. The second procedure (procedure B) was sequential extraction in accordance with Tessier. The results obtained in accordance with procedure A indicate that, regardless of the dust origin, the dominant group of Pb compounds is composed of lead salts which are soluble under alkaline conditions or lead compounds that form plumbites in the reaction with NaOH
TDR-based water content estimation on globigerina limestone through permittivity measurements
Most monuments and historical buildings in the Maltese Islands are made of the local Globigerina Limestone (GL). This type of stone, however, is very delicate and prone to degradation caused by the environmental conditions of the islands. Hence, for the preservation of the Cultural Heritage monuments, it is necessary to promptly assess the health status of these structures and, in particular, their water content (which represents one of the major causes of degradation). Starting from these considerations, in this work, a time domain reflectometry (TDR)-based method for estimating water content of GL is presented. More specifically, the proposed method relies on estimating the water content value of the GL structure from TDR-based dielectric permittivity measurements. To verify the suitability of this system, experimental tests were carried out on a GL sample. The results anticipate the strong potential of the proposed method for practical applications in the Cultural Heritage diagnostics
Replica theory for learning curves for Gaussian processes on random graphs
Statistical physics approaches can be used to derive accurate predictions for
the performance of inference methods learning from potentially noisy data, as
quantified by the learning curve defined as the average error versus number of
training examples. We analyse a challenging problem in the area of
non-parametric inference where an effectively infinite number of parameters has
to be learned, specifically Gaussian process regression. When the inputs are
vertices on a random graph and the outputs noisy function values, we show that
replica techniques can be used to obtain exact performance predictions in the
limit of large graphs. The covariance of the Gaussian process prior is defined
by a random walk kernel, the discrete analogue of squared exponential kernels
on continuous spaces. Conventionally this kernel is normalised only globally,
so that the prior variance can differ between vertices; as a more principled
alternative we consider local normalisation, where the prior variance is
uniform
- …