24 research outputs found

    Mycotoxin detoxification of food by lactic acid bacteria

    Get PDF
    Publisher Copyright: © 2021, The Author(s).Today, a few hundred mycotoxins have been identified and the number is rising. Mycotoxin detoxification of food and feed has been a technically uphill task for the industry. In the twenty-first century, the public demand is healthy food with minimum use of chemicals and preservatives. Among all the fungal inhibition and mycotoxin detoxification methods so far developed for food, biopreservation and biodetoxification have been found safe and reliable. Nowadays, lactic acid bacteria (LAB) are of great interest as biological additives in food owing to their Generally Recognized as Safe (GRAS) classification and mycotoxin detoxification capability. The occurrence of fungul growth in the food chain can lead to health problems such as mycotoxicosis and cancer to humans due to producing mycotoxins such as aflatoxins. Biopreservation is among the safest and most reliable methods for inhibition of fungi in food. This review highlights the great potential of LAB as biodetoxificant by summarizing various reported detoxification activities of LAB against fungal mycotoxins released into foods. Mechanisms of mycotoxin detoxification, also the inherent and environmental factors affecting detoxifying properties of LAB are also covered.Peer reviewe

    Barley-based probiotic food mixture : health effects and future prospects

    Get PDF
    Consumers around the globe are increasingly aware of the relation between nutrition and health. In this sense, food products that can improve gastrointestinal health such as probiotics, prebiotics and synbiotics are the most important segment within functional foods. Cereals are the potential substrates for probiotic products as they contain nutrients easily assimilated by probiotics and serve as the transporters of Lactobacilli through the severe conditions of gastrointestinal tract. Barley is one of the important substrates for the probiotic formulation because of its high phenolic compounds, beta-glucans and tocols. The purpose of this review is to examine recent information regarding barley-based probiotic foods with a specific focus on the potential benefits of barley as a substrate for probiotic microorganisms in the development of dairy and nondairy based food products, and to study the effects of food matrices containing barley beta-glucans on the growth and features of Lactobacillus strains after fermentation.Peer reviewe

    Antifungal Preservation of Food by Lactic Acid Bacteria

    Get PDF
    Fungal growth and consequent mycotoxin release in food and feed threatens human health, which might even, in acute cases, lead to death. Control and prevention of foodborne poisoning is a major task of public health that will be faced in the 21st century. Nowadays, consumers increasingly demand healthier and more natural food with minimal use of chemical preservatives, whose negative effects on human health are well known. Biopreservation is among the safest and most reliable methods for inhibiting fungi in food. Lactic acid bacteria (LAB) are of great interest as biological additives in food owing to their Generally Recognized as Safe (GRAS) classification and probiotic properties. LAB produce bioactive compounds such as reuterin, cyclic peptides, fatty acids, etc., with antifungal properties. This review highlights the great potential of LAB as biopreservatives by summarizing various reported antifungal activities/metabolites of LAB against fungal growth into foods. In the end, it provides profound insight into the possibilities and different factors to be considered in the application of LAB in different foods as well as enhancing their efficiency in biodetoxification and biopreservative activities

    Antifungal Preservation of Food by Lactic Acid Bacteria

    Get PDF
    Fungal growth and consequent mycotoxin release in food and feed threatens human health, which might even, in acute cases, lead to death. Control and prevention of foodborne poisoning is a major task of public health that will be faced in the 21st century. Nowadays, consumers increasingly demand healthier and more natural food with minimal use of chemical preservatives, whose negative effects on human health are well known. Biopreservation is among the safest and most reliable methods for inhibiting fungi in food. Lactic acid bacteria (LAB) are of great interest as biological additives in food owing to their Generally Recognized as Safe (GRAS) classification and probiotic properties. LAB produce bioactive compounds such as reuterin, cyclic peptides, fatty acids, etc., with antifungal properties. This review highlights the great potential of LAB as biopreservatives by summarizing various reported antifungal activities/metabolites of LAB against fungal growth into foods. In the end, it provides profound insight into the possibilities and different factors to be considered in the application of LAB in different foods as well as enhancing their efficiency in biodetoxification and biopreservative activities

    Identification and Complete Genome Sequence of an Alternavirus from a Pathogenic Fungus, Fusarium nanum, Collected by Air Sampling

    No full text
    In this study, fungal spores were collected from the air, and mycelium was grown in Petri dishes containing potato dextrose agar medium in the lab. Based on the morphological and molecular characteristics, the fungus was identified as Fusarium nanum. A new double-stranded RNA (dsRNA) mycovirus was isolated from the mycelia of F. nanum and tentatively named Fusarium nanum alternavirus 1 (FnAV1). The complete genome sequence of FnAV1 was obtained by Illumina sequencing, followed by Sanger sequencing and the rapid amplification of cDNA ends (RACE) of the 5′ and 3′ ends. FnAV1 is composed of three dsRNA segments: dsRNA1 (3,546 nt) encodes RdRp, dsRNA2 (2,511 nt) encodes a hypothetical protein, and dsRNA3 encodes the coat protein (2,484 nt). The multiple alignments, along with phylogenetic analysis based on the RdRp (dsRNA1) and coat protein (dsRNA3) amino acid sequences, suggest that FnAV1 clusters with other members of the newly proposed family Alternaviridae, has high identities with Fusarium incarnatum alternavirus 1 (FiAV1), and might be a new strain isolated from a different fungal host, F. nanum. This is the first report of a mycovirus from the mycelial culture of F. nanum, which was obtained from spores collected at a 12-m altitude via air sampling. This suggests that the airborne spores could carry the mycovirus for long-distance movement and dissemination to new locations. [Graphic: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license

    Inhibitory effect of Thymus vulgaris extract on memory impairment induced by scopolamine in rat

    Get PDF
    Objective: To investigate the effect of Thymus vulgaris (T. vulgaris) on learning and memory functions in scopolamine-induced memory deficit in rats. Memory enhancing activity in scopolamine-induced amnesic rats was investigated by assessing the Morris water maze and passive avoidance paradigm. Methods: A total of 42 male Wistar rats were divided into 6 equal groups as follow: control group: received water, scopolamine treated group: received scopolamine 1 mg/kg for 15 days, two scopolamine + T. vulgaris treated groups: received scopolamine and T. vulgaris extract 50 and 100 mg/kg body weight per day for 15 days, two intact groups: received T. vulgaris extract 50 and 100 mg/kg body weight per day for 15 days. Results: Administration of T. vulgaris extract significantly restored memory and learning impairments induced by scopolamine in the passive avoidance test and Morris water maze test. Conclusions: T. vulgaris extract has repairing effects on memory and behavioral disorders produced by scopolamine and may have beneficial effects in the treatment of Alzheimer's disease

    Wild-type Lactococcus lactis producing bacteriocin-like prophage lysins

    No full text
    Introduction - Lactococcus is a genus of lactic acid bacteria used in the dairy industry as a starter. Lactococci have been found to produce altogether more than 40 different bacteriocins, ribosomally synthesized antimicrobial proteins. All known Lactococcus spp. bacteriocins belong to classes I and II, which are mainly heat-resistant peptides. No class III bacteriocins, bigger heat-sensitive proteins, including phage tail-like bacteriocins, have been found from the Lactococcus spp. Unlike phage tail-like bacteriocins, prophage lysins have not been regarded as bacteriocins, possibly because phage lysins contribute to autolysis, degrading the host's own cell wall. MethodsWild-type Lactococcus lactis strain LAC460, isolated from spontaneously fermented idli batter, was examined for its antimicrobial activity. We sequenced the genome, searched phage lysins from the culture supernatant, and created knock-out mutants to find out the source of the antimicrobial activity. Results and discussionThe strain LAC460 was shown to kill other Lactococcus strains with protease- and heat-sensitive lytic activity. Three phage lysins were identified in the culture supernatant. The genes encoding the three lysins were localized in different prophage regions in the chromosome. By knock-out mutants, two of the lysins, namely LysL and LysP, were demonstrated to be responsible for the antimicrobial activity. The strain LAC460 was found to be resistant to the lytic action of its own culture supernatant, and as a consequence, the phage lysins could behave like bacteriocins targeting and killing other closely related bacteria. Hence, similar to phage tail-like bacteriocins, phage lysin-like bacteriocins could be regarded as a novel type of class III bacteriocins.Peer reviewe

    Crude Oil–Brine–Rock Interactions in Tight Chalk Reservoirs: An Experimental Study

    No full text
    We present a systematic study of crude oil–brine–rock interactions in tight chalk cores at reservoir conditions. Flooding experiments are performed on outcrops (Stevns Klint) as well as on reservoir core plugs from Dan field, the Ekofisk and Tor formations. These studies are carried out in core plugs with reduced pore volumes, i.e., short core samples and aged with a dynamic ageing method. The method was evaluated by three different oil compositions. A series of synthetic multicomponent brines and designed fluid injection scenarios are investigated; injection flow rates are optimized to ensure that a capillary-dominant regime is maintained. Changes in brine compositions and fluid distribution in the core plugs are characterized using ion chromatography and X-ray computed tomography, respectively. First, we show that polar components in the oil phase play a major role in wettability alteration during ageing; this controls the oil production behavior. We also show that, compared to seawater, both formation water and ten-times-diluted seawater are better candidates for enhanced oil recovery in the Dan field. Finally, we show that the modified flow zone indicator, a measure of rock quality, is likely the main variable responsible for the higher oil recoveries observed in Tor core samples
    corecore