37 research outputs found

    Symmetry Transformation in Extended Phase Space: the Harmonic Oscillator in the Husimi Representation

    Full text link
    In a previous work the concept of quantum potential is generalized into extended phase space (EPS) for a particle in linear and harmonic potentials. It was shown there that in contrast to the Schr\"odinger quantum mechanics by an appropriate extended canonical transformation one can obtain the Wigner representation of phase space quantum mechanics in which the quantum potential is removed from dynamical equation. In other words, one still has the form invariance of the ordinary Hamilton-Jacobi equation in this representation. The situation, mathematically, is similar to the disappearance of the centrifugal potential in going from the spherical to the Cartesian coordinates. Here we show that the Husimi representation is another possible representation where the quantum potential for the harmonic potential disappears and the modified Hamilton-Jacobi equation reduces to the familiar classical form. This happens when the parameter in the Husimi transformation assumes a specific value corresponding to QQ-function.Comment: This is a contribution to the Proc. of the Seventh International Conference ''Symmetry in Nonlinear Mathematical Physics'' (June 24-30, 2007, Kyiv, Ukraine), published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    Reality of the Wigner Functions and Quantization

    Get PDF

    Design sensitive model reference controller with application to medical technology

    Get PDF
    The past two decades have seen the incorporation of robotics into medical applications. From a manufacturing perspective, robots have been used in pharmaceuticals, preparing medications. But on more novel levels, robots have been used in service roles, surgery, and prosthetics. The capability of high-precision operation in manufacturing settings gave the medical industry high hopes that robots could be used to assist in surgery. Not only are robots capable of much higher precision than a human, they are not susceptible to human factors, such as trembling and sneezing, that are undesirable in the surgery room. Another advantage to robots in medicine is the ability to perform surgery with very small incisions, which results in minimal scar tissue, and dramatically reduced recovery times. The popularity of these minimally invasive surgical (MIS) procedures has enabled the incorporation of robots in surgeries. In this paper, model reference computed torque controller is recommended for four degrees of freedom serial links robot manipulator, which modeled in SIMSCAPE. To design stable controller conventional computed torque controller is recommended. It is a nonlinear, stable, and reliable controller. The proposed approach effectively combines of design methods from nonlinear controller, and linear Proportional-Derivative (PD) control to improve the performance and stability. This paper has two important objectives: a) study on modeling of 4 degrees of freedom (DOF) based on Simscape software and b) design PD model reference computed torque controller to improve the sensitivity of surgical robot manipulator

    A study of the association between cognitive abilities and dietary intake in young women

    Get PDF
    Background: Cognitive abilities comprise activities that relate to receiving and responding to information from the environment, internal processing, making complex decisions, and then responding to this in the context of behavior. Aim: The current study investigated the association between dietary intake and seven aspects of cognitive abilities among healthy young women. Methods: The study was carried out among 182 women aged 18–25 years. A valid and reliable food frequency questionnaire containing 65 food items was used to estimate dietary intake. Neuropsychological function and cognitive abilities of participants were determined using standard questionnaires. Results: Significant differences were found in depression, anxiety, stress, physical, and mental health-related quality of life as well as daytime sleepiness for the participants in different quartiles of cognitive abilities score (p<0.05). Participants in the fourth quartile of cognitive abilities score consumed significantly higher energy, carbohydrate, protein, calcium, iron, zinc, vitamin A, thiamin, and riboflavin compared to those in the lowest quartile (p<0.05). There were strong correlations between total cognitive abilities score and dietary sodium, calcium, phosphorus, and thiamin (p<0.05). Using stepwise multiple linear regression analysis, iron and thiamin were statistically significant factors for the prediction of cognitive abilities. Conclusions: These findings demonstrate that neurocognitive function is related to dietary macro and micronutrients including energy, carbohydrate, protein, calcium, iron, zinc, vitamin A, thiamin, and riboflavin on cognitive performance among young women without memory deficit
    corecore