5 research outputs found
Avian Influenza A Virus (H5N1) Outbreaks, Kuwait, 2007
Phylogenetic analysis of influenza A viruses (H5N1) isolated from Kuwait in 2007 show that (H5N1) sublineage clade 2.2 viruses continue to spread across Europe, Africa, and the Middle East. Virus isolates were most closely related to isolates from central Asia and were likely vectored by migratory birds
Genetic Diversity of <i>Rhanterium eppaposum</i> Oliv. Populations in Kuwait as Revealed by GBS
Natural populations of Rhanterium eppaposum Oliv. (Arfaj), a perennial forage shrub, have depleted due to unethical human interventions and climate change in Kuwait. Therefore, there is an urgent need to conserve this native plant through the assessment of its genetic diversity and population structure. Genotyping by sequencing (GBS) has recently emerged as a powerful tool for the molecular diversity analysis of higher plants without prior knowledge of their genome. This study represents the first effort in using GBS to discover genome-wide single nucleotide polymorphisms (SNPs) of local Rhanterium plants to assess the genetic diversity present in landraces collected from six different locations in Kuwait. The study generated a novel set of 11,231 single nucleotide polymorphisms (SNPs) and indels (insertions and deletions) in 98 genotypes of Rhanterium. The analysis of molecular variance (AMOVA) revealed ~1.5% variation residing among the six populations, ~5% among the individuals within the population and 93% variation present within the populations (FST = 0.029; p = 0.0). Bayesian and UPGMA analyses identified two admixed clusters of the tested samples; however, the principal coordinates analysis returned the complete population as a single group. Mantel’s test returned a very weak correlation coefficient of r2 = 0.101 (p = 0.00) between the geographic and genetic distance. These findings are useful for the native species to formulate conservation strategies for its sustainable management and desert rehabilitation
Genetic diversity and population structure of Haloxylon salicornicum moq. in Kuwait by ISSR markers.
Haloxylon salicornicum moq. Bunge ex Boiss (Rimth) is one of the native plants of Kuwait, extensively depleting through the anthropogenic activities. It is important to conserve Haloxylon community in Kuwait as it can tolerate extreme adverse conditions of drought and salinity to be potentially used in the desert and urban revegetation and greenery national programs. Therefore, a set of 16 inter simple sequence repeat (ISSR) markers were used to assess genetic diversity and population structure of 108 genotypes from six locations in Kuwait. The ISSR primers produced 195 unambiguous and reproducible bands out of which 167 bands were polymorphic (86.5%) with a mean PIC value of 0.31. The overall average values of Nei's gene diversity (h') and Shannon's diversity index (I) were 0.254 and 0.375, respectively. Results of AMOVA revealed high genetic variations within populations (77.8%) and low among populations (22%). The values of Fixation index (FST = 0.22; P = 0.0), Genetic differentiation (GST = 0.262; G'ST = 0.327; D = 0.335 and Gene flow (NM = 0.880) were indicative of heterozygous populations. The results of STRUCTURE and split decomposition analysis suggested that the Rimth accessions of Kuwait can be grouped into five and six subpopulations, respectively. Principal coordinate analysis (PCoA) grouped them into three clusters. The pairwise Nei's genetic distances (DS) among populations demonstrated a narrow range from 0.047 to 0.187 (Scale-0.0 to 1.0). The Mantel's test revealed a weak correlation (r2- 0.188; P-0.013) between the genetic distance and geographic distances. Our results suggest that the narrowly distributed Haloxylon community in Kuwait demonstrated a high genetic diversity within the populations however the overall population structure was weak
Spatio-temporal variations in bacterial and fungal community associated with dust aerosol in Kuwait.
Kuwait is a country with a very high dust loading; in fact it bears the world's highest particulate matter concentration in the outdoor air. The airborne dust often has associated biological materials, including pathogenic microbes that pose a serious risk to the urban ecosystem and public health. This study has established the baseline taxonomic characterization of microbes associated with dust transported into Kuwait from different trajectories. A high volume air sampler with six-stage cascade impactor was deployed for sample collection at a remote as well as an urban site. Samples from three different seasons (autumn, spring and summer) were subjected to targeted amplicon sequencing. A set of ~ 50 and 60 bacterial and fungal genera, respectively, established the core air microbiome. The predominant bacterial genera (relative abundance ≥ 1%) were Brevundimonas (12.5%), Sphingobium (3.3%), Sphingopyxis (2.7%), Pseudomonas (2.5%), Sphingomonas (2.4%), Massilia (2.3%), Acidovorax (2.0%), Allorhizobium (1.8%), Halomonas (1.3%), and Mesorhizobium (1.1%), and the fungal taxa were Cryptococcus (12%) followed by Alternaria (9%), Aspergillus (7%), Candida (3%), Cladosporium (2.9%), Schizophyllum (1.6%), Fusarium (1.4%), Gleotinia (1.3%) and Penicillium (1.15%). Significant spatio-temporal variations were recorded in terms of relative abundances, α-diversities, and β-diversities of bacterial communities. The dissimilarities were less pronounced and instead the communities were fairly homogenous. Linear discrimant analysis revealed three fungal genera known to be significantly differentially abundant with respect to different size fractions of dust. Our results shed light on the spatio-temporal distribution of airborne microbes and their implications in general health