103 research outputs found

    Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison

    Get PDF
    In this paper, we report a direct comparison between coupled resonator optical waveguides (CROWs) and photonic crystal waveguides (PhCWs), which have both been exploited as tunable delay lines. The two structures were fabricated on the same silicon-on-insulator (SOI) technological platform, with the same fabrication facilities and evaluated under the same signal bit-rate conditions. We compare the frequency- and time-domain response of the two structures; the physical mechanism underlying the tuning of the delay; the main limits induced by loss, dispersion, and structural disorder; and the impact of CROW and PhCW tunable delay lines on the transmission of data stream intensity and phase modulated up to 100 Gb/s. The main result of this study is that, in the considered domain of applications, CROWs and PhCWs behave much more similarly than one would expect. At data rates around 100 Gb/s, CROWs and PhCWs can be placed in competition. Lower data rates, where longer absolute delays are required and propagation loss becomes a critical issue, are the preferred domain of CROWs fabricated with large ring resonators, while at data rates in the terabit range, PhCWs remain the leading technology

    Thermoelectric cross-plane properties on p- and n-Ge/SixGe1-x superlattices

    Get PDF
    Silicon and germanium materials have demonstrated an increasing attraction for energy harvesting, due to their sustainability and integrability with complementary metal oxide semiconductor and micro-electro-mechanical-system technology. The thermoelectric efficiencies for these materials, however, are very poor at room temperature and so it is necessary to engineer them in order to compete with telluride based materials, which have demonstrated at room temperature the highest performances in literature [1]. Micro-fabricated devices consisting of mesa structures with integrated heaters, thermometers and Ohmic contacts were used to extract the cross-plane values of the Seebeck coefficient and the thermal conductivity from p- and n-Ge/SixGe1-x superlattices. A second device consisting in a modified circular transfer line method structure was used to extract the electrical conductivity of the materials. A range of p-Ge/Si0.5Ge0.5 superlattices with different doping levels was investigated in detail to determine the role of the doping density in dictating the thermoelectric properties. A second set of n-Ge/Si0.3Ge0.7 superlattices was fabricated to study the impact that quantum well thickness might have on the two thermoelectric figures of merit, and also to demonstrate a further reduction of the thermal conductivity by scattering phonons at different wavelengths. This technique has demonstrated to lower the thermal conductivity by a 25% by adding different barrier thicknesses per period

    Mid-Infrared Plasmonic Platform Based on n-Doped Ge-on-Si: Molecular Sensing with Germanium Nano-Antennas on Si

    Get PDF
    CMOS-compatible, heavily-doped semiconductor films are very promising for applications in mid-infrared plasmonic devices because the real part of their dielectric function is negative and broadly tunable in this wavelength range. In this work we investigate n-type doped germanium epilayers grown on Si substrates. We design and realize Ge nanoantennas on Si substrates demonstrating the presence of localized plasmon resonances, and exploit them for molecular sensing in the mid-infrared

    Extending the emission wavelength of Ge nanopillars to 2.25 μm using silicon nitride stressors

    Get PDF
    The room temperature photoluminescence from Ge nanopillars has been extended from 1.6 μm to above 2.25 μm wavelength through the application of tensile stress from silicon nitride stressors deposited by inductively-coupled-plasma plasma-enhanced chemical-vapour-deposition. Photoluminescence measurements demonstrate biaxial equivalent tensile strains of up to ~ 1.35% in square topped nanopillars with side lengths of 200 nm. Biaxial equivalent strains of 0.9% are observed in 300 nm square top pillars, confirmed by confocal Raman spectroscopy. Finite element modelling demonstrates that an all-around stressor layer is preferable to a top only stressor, as it increases the hydrostatic component of the strain, leading to an increased shift in the band-edge and improved uniformity over top-surface only stressors layers

    Expanding the Ge emission wavelength to 2.25 μm with SixNy strain engineering

    Get PDF
    Photoluminescence up to 2.25 μm wavelength is demonstrated from Ge nanopillars strained by silicon nitride stressor layers. Tensile biaxial equivalent strains of up to ~1.35% and ~0.9% are shown from 200 × 200 nm, and 300 × 300 nm square top Ge pillars respectively. Strain in the latter is confirmed by Raman spectroscopy, and supported by finite element modelling, which gives an insight into the strain distribution and its effect on the band structure, in pillar structures fully coated by silicon nitride stressor layers

    Challenges in Clinical Development of Mesenchymal Stromal/Stem Cells: Concise Review

    Get PDF
    Identified 50 years ago, mesenchymal stromal/stem cells (MSCs) immediately generated a substantial interest among the scientific community because of their differentiation plasticity and hematopoietic supportive function. Early investigations provided evidence of a relatively low engraftment rate and a transient benefit for challenging congenital and acquired diseases. The reasons for these poor therapeutic benefits forced the entire field to reconsider MSC mechanisms of action together with their ex vivo manipulation procedures. This phase resulted in advances in MSCs processing and the hypothesis that MSC-tissue supportive functions may be prevailing their differentiation plasticity, broadening the spectrum of MSCs therapeutic potential far beyond their lineage-restricted commitments. Consequently, an increasing number of studies have been conducted for a variety of clinical indications, revealing additional challenges and suggesting that MSCs are still lagging behind for a solid clinical translation. For this reason, our aim was to dissect the current challenges in the development of still promising cell types that, after more than half a century, still need to reach their maturity. Stem Cells Translational Medicine 2019;8:1135–1148

    Fibrotic idiopathic interstitial lung disease: the molecular and cellular key players.

    Get PDF
    Interstitial lung disease (ILDs) that are known as diffuse parenchymal lung diseases (DPLDs) lead to the damage of alveolar epithelium and lung parenchyma culminating into inflammation and widespread fibrosis. ILDs that account for more than 200 different pathologies, can be di-vided into two groups: ILDs that have a known cause and those where the cause is unknown clas-sified as Idiopathic Interstitial Pneumonia (IIPs). IIPs include idiopathic pulmonary fibrosis (IPF), non-specific interstitial pneumonia (NSIP), cryptogenic organizing pneumonia (COP) known also as bronchiolitis obliterans organizing pneumonia (BOOP), Acute interstitial pneumonia (AIP), Desquamative Interstitial Pneumonia (DIP), Respiratory bronchiolitis-associated interstitial lung disease (RB-ILD), and lymphocytic interstitial pneumonia (LIP). In this review our aim is to de-scribe the pathogenic mechanisms that lead to the onset and progression of the different IIPs, starting from IPF as the most studied, in order to find both common and standalone molecular and cellular key players among them. Finally, a deeper molecular and cellular characterization of different interstitial lung disease without known cause, would contribute to give a more accurate diagnosis to the patients, that would translate in a more effective treatment decision

    Impact of HOXB7 overexpression on human adipose-derived mesenchymal progenitors

    Get PDF
    Background: The ex vivo expansion potential of mesenchymal stromal/stem cells (MSC) together with their differentiation and secretion properties makes these cells an attractive tool for transplantation and tissue engineering. Although the use of MSC is currently being tested in a growing number of clinical trials, it is still desirable to identify molecular markers that may help improve their performance both in vitro and after transplantation. Methods: Recently, HOXB7 was identified as a master player driving the proliferation and differentiation of bone marrow mesenchymal progenitors. In this study, we investigated the effect of HOXB7 overexpression on the ex vivo features of adipose mesenchymal progenitors (AD-MSC). Results: HOXB7 increased AD-MSC proliferation potential, reduced senescence, and improved chondrogenesis together with a significant increase of basic fibroblast growth factor (bFGF) secretion. Conclusion: While further investigations and in vivo models shall be applied for better understanding, these data suggest that modulation of HOXB7 may be a strategy for innovative tissue regeneration applications
    • …
    corecore