44 research outputs found

    Intracellular cGMP increase is not involved in thyroid cancer cell death

    Get PDF
    Introduction: Type 5 phosphodiesterase (PDE5) inhibitors (PDE5i) lead to intracellular cyclic-guanosine monophosphate (cGMP) increase and are used for clinical treatment of erectile dysfunction. Studies found that cGMP may up/downregulate the growth of certain endocrine tumor cells, suggesting that PDE5i could impact cancer risk. Aim: We evaluated if PDE5i may modulate thyroid cancer cell growth in vitro. Materials and methods: We used malignant (K1) and benign (Nthy-ori 3-1) thyroid cell lines, as well as the COS7 cells as a reference model. Cells were treated 0-24 h with the PDE5i vardenafil or the cGMP analog 8-br-cGMP (nM-μM range). cGMP levels and caspase 3 cleavage were evaluated by BRET, in cGMP or caspase 3 biosensor-expressing cells. Phosphorylation of the proliferation-associated extracellularly-regulated kinases 1 and 2 (ERK1/2) was evaluated by Western blotting, while nuclear fragmentation by DAPI staining. Cell viability was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results: Both vardenafil and 8-br-cGMP effectively induced dose-dependent cGMP BRET signals (p≤0.05) in all the cell lines. However, no differences in caspase 3 activation occurred comparing PDE5i-treated vs untreated cells, at all concentrations and time-points tested (p>0.05). These results match those obtained upon cell treatment with 8-br-cGMP, which failed in inducing caspase 3 cleavage in all the cell lines (p>0.05). Moreover, they reflect the lack of nuclear fragmentation. Interestingly, the modulation of intracellular cGMP levels with vardenafil or the analog did not impact cell viability of both malignant and benign thyroid tumor cell lines, nor the phosphorylation of ERK1/2 (p>0.05). Conclusions: This study demonstrates that increased cGMP levels are not linked to cell viability or death in K1 and Nthy-ori 3-1 cell lines, suggesting that PDE5i do not impact the growth of thyroid cancer cells. Since different results were previously published, further investigations are recommended to clarify the impact of PDE5i on thyroid cancer cells

    Altered methylation pattern of the SRD5A2 gene in the cerebrospinal fluid of post-finasteride patients: A pilot study

    Get PDF
    Context: Post-finasteride syndrome (PFS) occurs in patients with androgenic alopecia after suspension of the finasteride treatment, leading to a large variety of persistent side effects. Despite the severity of the clinical picture, the mechanism underlying the PFS symptoms onset and persistence is still unclear. Objective: To study whether epigenetic modifications occur in PFS patients. Methods: Retrospective analysis of a multicentric, prospective, longitudinal, case\u2013control clinical trial, enrolling 16 PFS patients, compared to 20 age-matched healthy men. Main outcomes were methylation pattern of SRD5A1 and SRD5A2 promoters and concentration of 11 neuroactive steroids, measured by liquid chromatography-tandem mass spectrometry, in blood and cerebrospinal fluid (CSF) samples. Results: SRD5A1 and SRD5A2 methylation analysis was performed in all blood samples (n = 16 PFS patients and n = 20 controls), in 16 CSF samples from PFS patients and in 13 CSF samples from controls. The SRD5A2 promoter was more frequently methylated in CSF of PFS patients compared to controls (56.3 vs 7.7%). No promoter methylation was detected in blood samples in both groups. No methylation occurred in the SRD5A1 promoter of both groups. Unmethylated controls compared to unmethylated SRD5A2 patients showed higher pregnenolone, dihydrotestosterone and dihydroprogesterone, together with lower testosterone CSF levels. Andrological and neurological assessments did not differ between methylated and unmethylated subjects. Conclusions: For the first time, we demonstrate a tissue-specific methylation pattern of SRD5A2 promoter in PFS patients. Although we cannot conclude whether this pattern is prenatally established or induced by finasteride treatment, it could represent an important mechanism of neuroactive steroid levels and behavioural disturbances previously described in PFS

    Short-Term Exposure to Bisphenol A Does Not Impact Gonadal Cell Steroidogenesis In Vitro

    Get PDF
    : Bisphenol A (BPA) is a ubiquitous, synthetic chemical proven to induce reproductive disorders in both men and women. The available studies investigated the effects of BPA on male and female steroidogenesis following long-term exposure to the compound at relatively high environmental concentrations. However, the impact of short-term exposure to BPA on reproduction is poorly studied. We evaluated if 8 and 24 h exposure to 1 nM and 1 µM BPA perturbs luteinizing hormone/choriogonadotropin (LH/hCG)-mediated signalling in two steroidogenic cell models, i.e., the mouse tumour Leydig cell line mLTC1, and human primary granulosa lutein cells (hGLC). Cell signalling studies were performed using a homogeneous time-resolved fluorescence (HTRF) assay and Western blotting, while gene expression analysis was carried out using real-time PCR. Immunostainings and an immunoassay were used for intracellular protein expression and steroidogenesis analyses, respectively. The presence of BPA leads to no significant changes in gonadotropin-induced cAMP accumulation, alongside phosphorylation of downstream molecules, such as ERK1/2, CREB and p38 MAPK, in both the cell models. BPA did not impact STARD1, CYP11A1 and CYP19A1 gene expression in hGLC, nor Stard1 and Cyp17a1 expression in mLTC1 treated with LH/hCG. Additionally, the StAR protein expression was unchanged upon exposure to BPA. Progesterone and oestradiol levels in the culture medium, measured by hGLC, as well as the testosterone and progesterone levels in the culture medium, measured by mLTC1, did not change in the presence of BPA combined with LH/hCG. These data suggest that short-term exposure to environmental concentrations of BPA does not compromise the LH/hCG-induced steroidogenic potential of either human granulosa or mouse Leydig cells

    Autoantibodies to Ezrin are an early sign of pancreatic cancer in humans and in genetically engineered mouse models

    Get PDF
    BACKGROUND: Pancreatic Ductal Adenocarcinoma (PDAC) is a highly aggressive malignancy with only a 5% 5-year survival rate. Reliable biomarkers for early detection are still lacking. The goals of this study were (a) to identify early humoral responses in genetically engineered mice (GEM) spontaneously developing PDAC; and (b) to test their diagnostic/predictive value in newly diagnosed PDAC patients and in prediagnostic sera. METHODS AND RESULTS: The serum reactivity of GEM from inception to invasive cancer, and in resectable or advanced human PDAC was tested by two-dimensional electrophoresis Western blot against proteins from murine and human PDAC cell lines, respectively. A common mouse-to-human autoantibody signature, directed against six antigens identified by MALDI-TOF mass spectrometry, was determined. Of the six antigens, Ezrin displayed the highest frequency of autoantibodies in GEM with early disease and in PDAC patients with resectable disease. The diagnostic value of Ezrin-autoantibodies to discriminate PDAC from controls was further shown by ELISA and ROC analyses (P < 0.0001). This observation was confirmed in prediagnostic sera from the EPIC prospective study in patients who eventually developed PDAC (with a mean time lag of 61.2 months between blood drawing and PDAC diagnosis). A combination of Ezrin-autoantibodies with CA19.9 serum levels and phosphorylated α-Enolase autoantibodies showed an overall diagnostic accuracy of 0.96 ± 0.02. CONCLUSIONS: Autoantibodies against Ezrin are induced early in PDAC and their combination with other serological markers may provide a predictive and diagnostic signature

    The cAMP/PKA pathway: steroidogenesis of the antral follicular stage.

    No full text
    Pituitary gonadotropins, follicle-stimulating (FSH) and luteinizing hormone (LH) promote follicular recruitment and support antral follicle growth, maturation and selection, resulting in ovulation of the dominant follicle. FSH and LH biological functions are mediated by G protein-coupled receptors, FSHR and LHCGR, resulting in the activation of a number of signaling cascades, such as the cyclic AMP/protein kinase A (cAMP/PKA) pathway. Some in-vitro data are consistent with the dual, proliferative and pro-apoptotic role of cAMP, leaving unanswered questions on how cAMP/PKA signaling is linked to the follicle fate. Progression of the antral stage is characterized by the presence of dynamic serum gonadotropin and estrogen levels, accompanying proliferation and steroidogenesis of growing as well as apoptosis of atretic follicles. These events are parallel to changes of FSHR and LHCGR density at the cell surface occurring throughout the antral stage, reasonably modulating the cAMP/PKA activation pattern, cell metabolism and functions. Understanding whether gonadotropins and receptor expression levels impact on the steroidogenic pathway and play a role in determining the follicular fate, may put new light on molecular mechanisms regulating human reproduction. The aim of the present review is to update the role of major players modulating the cAMP/PKA pathway and regulating the balance between proliferative, differentiating and pro-apoptotic signals

    Age-Dependent Modifications of AMPA Receptor Subunit Expression Levels and Related Cognitive Effects in 3xTg-AD Mice

    Get PDF
    GluA1, GluA2, GluA3, and GluA4 are the constitutive subunits of amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), the major mediators of fast excitatory transmission in the mammalian central nervous system. Most AMPARs are Ca(2+)-impermeable because of the presence of the GluA2 subunit. GluA2 mRNA undergoes an editing process that results in a Q-R substitution, a key factor in the regulation of AMPAR Ca(2+)-permeability. AMPARs lacking GluA2 or containing the unedited subunit are permeable to Ca(2+) and Zn(2+). The phenomenon physiologically modulates synaptic plasticity while, in pathologic conditions, leads to increased vulnerability to excitotoxic neuronal death. Given the importance of these subunits, we have therefore evaluated possible associations between changes in expression levels of AMPAR subunits and development of cognitive deficits in 3xTg-AD mice, a widely investigated transgenic mouse model of Alzheimer's disease (AD). With quantitative real-time PCR analysis, we assayed hippocampal mRNA expression levels of GluA1-4 subunits occurring in young [3 months of age (m.o.a.)] and old (12 m.o.a) Tg-AD mice and made comparisons with levels found in age-matched wild type (WT) mice. Efficiency of GluA2 RNA editing was also analyzed. All animals were cognitively tested for learning short- and long-term spatial memory with the Morris Water Maze (MWM) navigation task. 3xTg-AD mice showed age-dependent decreases of mRNA levels for all the AMPAR subunits, with the exception of GluA2. Editing remained fully efficient with aging in 3xTg-AD and WT mice. A one-to-one correlation analysis between MWM performances and GluA1-4 mRNA expression profiles showed negative correlations between GluA2 levels and MWM performances in young 3xTg-AD mice. On the contrary, positive correlations between GluA2 mRNA and MWM performances were found in young WT mice. Our data suggest that increases of AMPARs that contain GluA1, GluA3, and GluA4 subunits may help in maintaining cognition in pre-symptomatic 3xTg-AD mice
    corecore