5 research outputs found

    Controlled release delivery of penciclovir via a silicone (MED-4750) polymer: kinetics of drug delivery and efficacy in preventing primary feline herpesvirus infection in culture

    Get PDF
    Peripheral T-cell lymphoma (PTCL) represents a relatively rare group of heterogeneous non-Hodgkin lymphomas, with generally poor prognosis. Historically, there has been a lack of consensus regarding appropriate therapeutic measures for the disease, with conventional frontline chemotherapies being utilized in most cases. Following promising results obtained in 2009, the methotrexate analogue, pralatrexate, became the first drug to gain US FDA approval for the treatment of refractory PTCL. This antimetabolite was designed to have a higher affinity for reduced folate carrier (RFC) and folylpolyglutamate synthetase (FPGS). RFC is the principal transporter for cell entrance of folates and antifolates. Once inside the cell, pralatrexate is efficiently polyglutamated by FPGS. Pralatrexate has demonstrated varying degrees of efficacy in peripheral T-cell lymphoma, with response rates differing between the multiple subtypes of the disease. While phase III studies are still to be completed, early clinical trials indicate that pralatrexate is promising new therapeutic for PTCL

    Controlled release delivery of penciclovir via a silicone (MED-4750) polymer: kinetics of drug delivery and efficacy in preventing primary feline herpesvirus infection in culture

    Get PDF
    BackgroundHerpesviruses are ubiquitous pathogens that infect and cause recurrent disease in multiple animal species. Feline herpesvirus-1 (FHV-1), a member of the alphaherpesvirus family, causes respiratory illness and conjunctivitis, and approximately 80% of domestic cats are latently infected. Oral administration of famciclovir or topical application of cidofovir has been shown in masked, placebo-controlled prospective trials to reduce clinical signs and viral shedding in experimentally inoculated cats. However, to the authors' knowledge, other drugs have not been similarly assessed or were not safe or effective. Likewise, to our knowledge, no drugs have been assessed in a placebo-controlled manner in cats with recrudescent herpetic disease. Controlled-release devices would permit long-term administration of these drugs and enhance compliance.MethodsWe therefore engineered implantable cylindrical devices made from silicone (MED-4750) impregnated with penciclovir, for long-term, steady-state delivery of this drug.ResultsOur data show that these devices release penciclovir with a burst of drug delivery until the tenth day of release, then at an average rate of 5.063 ± 1.704 μg per day through the next 50 days with near zero-order kinetics (in comparison to MED-4750-acyclovir devices, which show the same burst kinetics and average 2.236 ± 0.625 μg/day thereafter). Furthermore, these devices suppress primary infection of FHV-1 in a cell culture system.ConclusionsThe clinical deployment of these silicone-penciclovir devices may allow long-term treatment of FHV-1 infection with a single intervention that could last the life of the host cat

    Silicone-Acyclovir Controlled Release Devices Suppress Primary Herpes Simplex Virus-2 and Varicella Zoster Virus Infections In Vitro

    No full text
    Following initial infection, herpesviruses retreat into a permanent latent state with periodic reactivation resulting in an enhanced likelihood of transmission and clinical disease. The nucleoside analogue acyclovir reduces clinical symptoms of the three human alpha herpesviruses, HSV-1, HSV-2, and VZV. Long-term administration of acyclovir (ACV) can reduce the frequency and severity of reactivation, but its low bioavailability and short half-life require a daily drug regimen. Our lab is working to develop a subcutaneous delivery system to provide long-lasting, sustained release of ACV. Previously, we demonstrated that an implantable silicone (MED-4050) device, impregnated with ACV protected against HSV-1 both in vitro and in vivo. Here, we extend our in vitro observations to include protection against both HSV-2 and VZV. We also demonstrate protection against HSV-2 in vitro using MED-4750, a silicone polymer designed for long-term use in humans. When release of ACV from MED-4750 is quantitated on a daily basis, an initial burst of 5 days is observed, followed by a long period of slow release with near-zero-order kinetics, with an average daily release of 1.3923 ± 0.5908 μg ACV over days 20–60. Development of a slow-release implant has the potential to significantly impact the treatment of human alpha herpesvirus infections
    corecore