7 research outputs found

    Truncated stathmin-2 is a marker of TDP-43 pathology in frontotemporal dementia.

    Get PDF
    No treatment for frontotemporal dementia (FTD), the second most common type of early-onset dementia, is available, but therapeutics are being investigated to target the 2 main proteins associated with FTD pathological subtypes: TDP-43 (FTLD-TDP) and tau (FTLD-tau). Testing potential therapies in clinical trials is hampered by our inability to distinguish between patients with FTLD-TDP and FTLD-tau. Therefore, we evaluated truncated stathmin-2 (STMN2) as a proxy of TDP-43 pathology, given the reports that TDP-43 dysfunction causes truncated STMN2 accumulation. Truncated STMN2 accumulated in human induced pluripotent stem cell-derived neurons depleted of TDP-43, but not in those with pathogenic TARDBP mutations in the absence of TDP-43 aggregation or loss of nuclear protein. In RNA-Seq analyses of human brain samples from the NYGC ALS cohort, truncated STMN2 RNA was confined to tissues and disease subtypes marked by TDP-43 inclusions. Last, we validated that truncated STMN2 RNA was elevated in the frontal cortex of a cohort of patients with FTLD-TDP but not in controls or patients with progressive supranuclear palsy, a type of FTLD-tau. Further, in patients with FTLD-TDP, we observed significant associations of truncated STMN2 RNA with phosphorylated TDP-43 levels and an earlier age of disease onset. Overall, our data uncovered truncated STMN2 as a marker for TDP-43 dysfunction in FTD

    System-wide transcriptome damage and tissue identity loss in COVID-19 patients

    Get PDF
    The molecular mechanisms underlying the clinical manifestations of coronavirus disease 2019 (COVID-19), and what distinguishes them from common seasonal influenza virus and other lung injury states such as acute respiratory distress syndrome, remain poorly understood. To address these challenges, we combine transcriptional profiling of 646 clinical nasopharyngeal swabs and 39 patient autopsy tissues to define body-wide transcriptome changes in response to COVID-19. We then match these data with spatial protein and expression profiling across 357 tissue sections from 16 representative patient lung samples and identify tissue-compartment-specific damage wrought by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, evident as a function of varying viral loads during the clinical course of infection and tissue-type-specific expression states. Overall, our findings reveal a systemic disruption of canonical cellular and transcriptional pathways across all tissues, which can inform subsequent studies to combat the mortality of COVID-19 and to better understand the molecular dynamics of lethal SARS-CoV-2 and other respiratory infections., • Across all organs, fibroblast, and immune cell populations increase in COVID-19 patients • Organ-specific cell types and functional markers are lost in all COVID-19 tissue types • Lung compartment identity loss correlates with SARS-CoV-2 viral loads • COVID-19 uniquely disrupts co-occurrence cell type clusters (different from IAV/ARDS) , Park et al. report system-wide transcriptome damage and tissue identity loss wrought by SARS-CoV-2, influenza, and bacterial infection across multiple organs (heart, liver, lung, kidney, and lymph nodes) and provide a spatiotemporal landscape of COVID-19 in the lung

    Postmortem Cortex Samples Identify Distinct Molecular Subtypes of ALS: Retrotransposon Activation, Oxidative Stress, and Activated Glia

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. While several pathogenic mutations have been identified, the vast majority of ALS cases have no family history of disease. Thus, for most ALS cases, the disease may be a product of multiple pathways contributing to varying degrees in each patient. Using machine learning algorithms, we stratify the transcriptomes of 148 ALS postmortem cortex samples into three distinct molecular subtypes. The largest cluster, identified in 61% of patient samples, displays hallmarks of oxidative and proteotoxic stress. Another 19% of the samples shows predominant signatures of glial activation. Finally, a third group (20%) exhibits high levels of retrotransposon expression and signatures of TARDBP/TDP-43 dysfunction. We further demonstrate that TDP-43 (1) directly binds a subset of retrotransposon transcripts and contributes to their silencing in vitro, and (2) pathological TDP-43 aggregation correlates with retrotransposon de-silencing in vivo

    Molecular and Clinical Epidemiology of SARS-CoV-2 Infection among Vaccinated and Unvaccinated Individuals in a Large Healthcare Organization from New Jersey

    No full text
    New Jersey was among the first states impacted by the COVID-19 pandemic, with one of the highest overall death rates in the nation. Nevertheless, relatively few reports have been published focusing specifically on New Jersey. Here we report on molecular, clinical, and epidemiologic observations, from the largest healthcare network in the state, in a cohort of vaccinated and unvaccinated individuals with laboratory-confirmed SARS-CoV-2 infection. We conducted molecular surveillance of SARS-CoV-2-positive nasopharyngeal swabs collected in nine hospitals from December 2020 through June 2022, using both whole genome sequencing (WGS) and a real-time RT-PCR screening assay targeting spike protein mutations found in variants of concern (VOCs) within our region. De-identified clinical data were obtained retrospectively, including demographics, COVID-19 vaccination status, ICU admission, ventilator support, mortality, and medical history. Statistical analyses were performed to identify associations between SARS-CoV-2 variants, vaccination status, clinical outcomes, and medical risk factors. A total of 5007 SARS-CoV-2-positive nasopharyngeal swabs were successfully screened and/or sequenced. Variant screening identified three predominant VOCs, including Alpha (n = 714), Delta (n = 1877), and Omicron (n = 1802). Omicron isolates were further sub-typed as BA.1 (n = 899), BA.2 (n = 853), or BA.4/BA.5 (n = 50); the remaining 614 isolates were classified as “Other”. Approximately 31.5% (1577/5007) of the samples were associated with vaccine breakthrough infections, which increased in frequency following the emergence of Delta and Omicron. Severe clinical outcomes included ICU admission (336/5007 = 6.7%), ventilator support (236/5007 = 4.7%), and mortality (430/5007 = 8.6%), with increasing age being the most significant contributor to each (p p p < 0.001) in clinical outcomes were also noted between SARS-CoV-2 variants, including Delta, Omicron BA.1, and Omicron BA.2. Vaccination was associated with significantly improved clinical outcomes in our study, despite an increase in breakthrough infections associated with waning immunity, greater antigenic variability, or both. Underlying comorbidities contributed significantly to mortality in both vaccinated and unvaccinated individuals, with increasing risk based on the total number of comorbidities. Real-time RT-PCR-based screening facilitated timely identification of predominant variants using a minimal number of spike protein mutations, with faster turnaround time and reduced cost compared to WGS. Continued evolution of SARS-CoV-2 variants will likely require ongoing surveillance for new VOCs, with real-time assessment of clinical impact

    Postmortem Cortex Samples Identify Distinct Molecular Subtypes of ALS: Retrotransposon Activation, Oxidative Stress, and Activated Glia

    No full text
    © 2019 The Author(s) Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. While several pathogenic mutations have been identified, the vast majority of ALS cases have no family history of disease. Thus, for most ALS cases, the disease may be a product of multiple pathways contributing to varying degrees in each patient. Using machine learning algorithms, we stratify the transcriptomes of 148 ALS postmortem cortex samples into three distinct molecular subtypes. The largest cluster, identified in 61% of patient samples, displays hallmarks of oxidative and proteotoxic stress. Another 19% of the samples shows predominant signatures of glial activation. Finally, a third group (20%) exhibits high levels of retrotransposon expression and signatures of TARDBP/TDP-43 dysfunction. We further demonstrate that TDP-43 (1) directly binds a subset of retrotransposon transcripts and contributes to their silencing in vitro, and (2) pathological TDP-43 aggregation correlates with retrotransposon de-silencing in vivo

    Postmortem Cortex Samples Identify Distinct Molecular Subtypes of ALS: Retrotransposon Activation, Oxidative Stress, and Activated Glia

    No full text
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. While several pathogenic mutations have been identified, the vast majority of ALS cases have no family history of disease. Thus, for most ALS cases, the disease may be a product of multiple pathways contributing to varying degrees in each patient. Using machine learning algorithms, we stratify the transcriptomes of 148 ALS postmortem cortex samples into three distinct molecular subtypes. The largest cluster, identified in 61% of patient samples, displays hallmarks of oxidative and proteotoxic stress. Another 19% of the samples shows predominant signatures of glial activation. Finally, a third group (20%) exhibits high levels of retrotransposon expression and signatures of TARDBP/TDP-43 dysfunction. We further demonstrate that TDP-43 (1) directly binds a subset of retrotransposon transcripts and contributes to their silencing in vitro, and (2) pathological TDP-43 aggregation correlates with retrotransposon de-silencing in vivo

    Truncated stathmin-2 is a marker of TDP-43 pathology in frontotemporal dementia

    No full text
    No treatment for frontotemporal dementia (FTD), the second most common type of early-onset dementia, is available, but therapeutics are being investigated to target the 2 main proteins associated with FTD pathological subtypes: TDP-43 (FTLD-TDP) and tau (FTLD-tau). Testing potential therapies in clinical trials is hampered by our inability to distinguish between patients with FTLD-TDP and FTLD-tau. Therefore, we evaluated truncated stathmin-2 (STMN2) as a proxy of TDP-43 pathology, given the reports that TDP-43 dysfunction causes truncated STMN2 accumulation. Truncated STMN2 accumulated in human induced pluripotent stem cell-derived neurons depleted of TDP-43, but not in those with pathogenic TARDBP mutations in the absence of TDP-43 aggregation or loss of nuclear protein. In RNA-Seq analyses of human brain samples from the NYGC ALS cohort, truncated STMN2 RNA was confined to tissues and disease subtypes marked by TDP-43 inclusions. Last, we validated that truncated STMN2 RNA was elevated in the frontal cortex of a cohort of patients with FTLD-TDP but not in controls or patients with progressive supranuclear palsy, a type of FTLD-tau. Further, in patients with FTLD-TDP, we observed significant associations of truncated STMN2 RNA with phosphorylated TDP-43 levels and an earlier age of disease onset. Overall, our data uncovered truncated STMN2 as a marker for TDP-43 dysfunction in FTD
    corecore