2 research outputs found

    Proglašen Zakonik kanona istočnih crkava

    Get PDF
    The hydrothermal synthesis of a zeolite with properties suitable for use in the assembly–disassembly–organization–reassembly (ADOR) process was designed, and a zeolite called SAZ-1 was successfully prepared. This zeolite was then used as a parent in the ADOR process, and two new daughter zeolites, IPC-15 and IPC-16, were prepared. The X-ray powder diffraction patterns of the new zeolites match well with those predicted using computational methods. The three materials form an isoreticular series with decreasing pores size from 14-ring to 12-ring to 10-ring

    <i>In Situ</i> Single-crystal X‑ray Diffraction Studies of Physisorption and Chemisorption of SO<sub>2</sub> within a Metal–Organic Framework and Its Competitive Adsorption with Water

    No full text
    Living on an increasingly polluted planet, the removal of toxic pollutants such as sulfur dioxide (SO2) from the troposphere and power station flue gas is becoming more and more important. The CPO-27/MOF-74 family of metal–organic frameworks (MOFs) with their high densities of open metal sites is well suited for the selective adsorption of gases that, like SO2, bind well to metals and have been extensively researched both practically and through computer simulations. However, until now, focus has centered upon the binding of SO2 to the open metal sites in this MOF (called chemisorption, where the adsorbent–adsorbate interaction is through a chemical bond). The possibility of physisorption (where the adsorbent–adsorbate interaction is only through weak intermolecular forces) has not been identified experimentally. This work presents an in situ single-crystal X-ray diffraction (scXRD) study that identifies discrete adsorption sites within Ni-MOF-74/Ni-CPO-27, where SO2 is both chemisorbed and physisorbed while also probing competitive adsorption of SO2 of these sites when water is present. Further features of this site have been confirmed by variable SO2 pressure scXRD studies, DFT calculations, and IR studies
    corecore