5 research outputs found

    Single-cell-resolved interspecies comparison shows a shared inflammatory axis and a dominant neutrophil-endothelial program in severe COVID-19

    Get PDF
    A key issue for research on COVID-19 pathogenesis is the lack of biopsies from patients and of samples at the onset of infection. To overcome these hurdles, hamsters were shown to be useful models for studying this disease. Here, we further leverage the model to molecularly survey the disease progression from time-resolved single-cell RNA sequencing data collected from healthy and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected Syrian and Roborovski hamster lungs. We compare our data to human COVID-19 studies, including bronchoalveolar lavage, nasal swab, and postmortem lung tissue, and identify a shared axis of inflammation dominated by macrophages, neutrophils, and endothelial cells, which we show to be transient in Syrian and terminal in Roborovski hamsters. Our data suggest that, following SARS-CoV-2 infection, commitment to a type 1- or type 3-biased immunity determines moderate versus severe COVID-19 outcomes, respectively

    Dual linkage of a locus to left ventricular mass and a cardiac gene co-expression network driven by a chromosome domain

    Get PDF
    We have previously reported Lvm1 as a quantitative trait locus (QTL) on chromosome 13 (chr13) that links to cardiac left ventricular mass (LVM) in a panel of AxB/BxA mouse recombinant inbred strains (RIS). When performing a gene expression QTL (eQTL) analysis, we detected 33 cis-eQTLs that correlated with LVM. Among the latter, a group of 8 cis-eQTLs clustered in a genomic region smaller than 6 Mb and surrounding the Lvm1 peak on chr13. Co-variant analysis indicated that all 8 genes correlated with the phenotype in a causal rather than a reactive fashion, a finding that (despite its functional interest) did not provide grounds to prioritize any of these candidate genes. As a complementary approach, we performed weighted gene co-expression network analysis, which allowed us to detect 49 modules of highly connected genes. The module that correlated best with LVM: 1) showed linkage to a module QTL whose boundaries matched closely those of the phenotypic Lvm1 QTL on chr13; 2) harbored a disproportionately high proportion of genes originating from a small genomic region on chromosome 13 (including the 8 previously detected cis-eQTL genes); 3) contained genes that, beyond their individual level of expression, correlated with LVM as a function of their inter-connectivity; and 4) showed increased abundance of polymorphic insertion-deletion elements in the same region. Taken together, these data suggest that a domain on chromosome 13 constitutes the biologic principle responsible for the organization and linkage of the gene co-expression module, and indicate a mechanism whereby genetic variants within chromosome domains may associate to phenotypic changes via coordinate changes in the expression of several genes. One other possible implication of these findings is that candidate genes to consider as contributors to a particular phenotype should extend further than those that are closest to the QTL peak

    Cell fixation and preservation for droplet-based single-cell transcriptomics

    Get PDF
    Abstract Background Recent developments in droplet-based microfluidics allow the transcriptional profiling of thousands of individual cells in a quantitative, highly parallel and cost-effective way. A critical, often limiting step is the preparation of cells in an unperturbed state, not altered by stress or ageing. Other challenges are rare cells that need to be collected over several days or samples prepared at different times or locations. Methods Here, we used chemical fixation to address these problems. Methanol fixation allowed us to stabilise and preserve dissociated cells for weeks without compromising single-cell RNA sequencing data. Results By using mixtures of fixed, cultured human and mouse cells, we first showed that individual transcriptomes could be confidently assigned to one of the two species. Single-cell gene expression from live and fixed samples correlated well with bulk mRNA-seq data. We then applied methanol fixation to transcriptionally profile primary cells from dissociated, complex tissues. Low RNA content cells from Drosophila embryos, as well as mouse hindbrain and cerebellum cells prepared by fluorescence-activated cell sorting, were successfully analysed after fixation, storage and single-cell droplet RNA-seq. We were able to identify diverse cell populations, including neuronal subtypes. As an additional resource, we provide 'dropbead', an R package for exploratory data analysis, visualization and filtering of Drop-seq data. Conclusions We expect that the availability of a simple cell fixation method will open up many new opportunities in diverse biological contexts to analyse transcriptional dynamics at single-cell resolution
    corecore