16 research outputs found

    LiveOcean: a daily forecast model of biogeochemistry in Washington marine waters

    Get PDF
    LiveOcean is a daily forecast model of ocean conditions for the coastal waters of Washington, Oregon, and Vancouver Island, as well as the Salish Sea. It is forced with realistic tides, winds, rivers, and ocean conditions. The model simulates biogeochemical properties including phytoplankton, nitrate, dissolved oxygen, dissolved inorganic carbon, and alkalinity, up to 3 days in the future. It is used for the prediction of ocean acidification events in coastal estuaries, and for harmful algal bloom events on coastal beaches. I will describe the model construction, comparisons with observations, uses, and future developments

    Modeled Effect of Coastal Biogeochemical Processes, Climate Variability, and Ocean Acidification on Aragonite Saturation State in the Bering Sea

    Get PDF
    The Bering Sea is highly vulnerable to ocean acidification (OA) due to naturally cold, poorly buffered waters and ocean mixing processes. Harsh weather conditions within this rapidly changing, geographically remote environment have limited the quantity of carbon chemistry data, thereby hampering efforts to understand underlying spatial-temporal variability and detect long-term trends. We add carbonate chemistry to a regional biogeochemical model of the Bering Sea to explore the underlying mechanisms driving carbon dynamics over a decadal hindcast (2003–2012). The results illustrate that coastal processes generate considerable spatial variability in the biogeochemistry and vulnerability of Bering Sea shelf water to OA. Substantial seasonal biological productivity maintains high supersaturation of aragonite on the outer shelf, whereas riverine freshwater runoff loaded with allochthonous carbon decreases aragonite saturation states (ΩArag) to values below 1 on the inner shelf. Over the entire 2003–2012 model hindcast, annual surface ΩArag decreases by 0.025 – 0.04 units/year due to positive trends in the partial pressure of carbon dioxide (pCO2) in surface waters and dissolved inorganic carbon (DIC). Variability in this trend is driven by an increase in fall phytoplankton productivity and shelf carbon uptake, occurring during a transition from a relatively warm (2003–2005) to cold (2010–2012) temperature regime. Our results illustrate how local biogeochemical processes and climate variability can modify projected rates of OA within a coastal shelf system

    Projecting ocean acidification impacts for the Gulf of Maine to 2050: new tools and expectations

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Siedlecki, S. A., Salisbury, J., Gledhill, D. K., Bastidas, C., Meseck, S., McGarry, K., Hunt, C. W., Alexander, M., Lavoie, D., Wang, Z. A., Scott, J., Brady, D. C., Mlsna, I., Azetsu-Scott, K., Liberti, C. M., Melrose, D. C., White, M. M., Pershing, A., Vandemark, D., Townsend, D. W., Chen, C,. Mook, W., Morrison, R. Projecting ocean acidification impacts for the Gulf of Maine to 2050: new tools and expectations. Elementa: Science of the Anthropocene, 9(1), (2021): 00062, https://doi.org/10.1525/elementa.2020.00062.Ocean acidification (OA) is increasing predictably in the global ocean as rising levels of atmospheric carbon dioxide lead to higher oceanic concentrations of inorganic carbon. The Gulf of Maine (GOM) is a seasonally varying region of confluence for many processes that further affect the carbonate system including freshwater influences and high productivity, particularly near the coast where local processes impart a strong influence. Two main regions within the GOM currently experience carbonate conditions that are suboptimal for many organisms—the nearshore and subsurface deep shelf. OA trends over the past 15 years have been masked in the GOM by recent warming and changes to the regional circulation that locally supply more Gulf Stream waters. The region is home to many commercially important shellfish that are vulnerable to OA conditions, as well as to the human populations whose dependence on shellfish species in the fishery has continued to increase over the past decade. Through a review of the sensitivity of the regional marine ecosystem inhabitants, we identified a critical threshold of 1.5 for the aragonite saturation state (Ωa). A combination of regional high-resolution simulations that include coastal processes were used to project OA conditions for the GOM into 2050. By 2050, the Ωa declines everywhere in the GOM with most pronounced impacts near the coast, in subsurface waters, and associated with freshening. Under the RCP 8.5 projected climate scenario, the entire GOM will experience conditions below the critical Ωa threshold of 1.5 for most of the year by 2050. Despite these declines, the projected warming in the GOM imparts a partial compensatory effect to Ωa by elevating saturation states considerably above what would result from acidification alone and preserving some important fisheries locations, including much of Georges Bank, above the critical threshold.This research was financially supported by the Major Special Projects of the Ministry of Science and Technology of China (2016YFC020600), the Young Scholars Science Foundation of Lanzhou Jiaotong University (2018033), and the Talent Innovation and Entrepreneurship Projects of Lanzhou (2018-RC-84)

    Seasonal-to-interannual prediction of North American coastal marine ecosystems: forecast methods, mechanisms of predictability, and priority developments

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Jacox, M. G., Alexander, M. A., Siedlecki, S., Chen, K., Kwon, Y., Brodie, S., Ortiz, I., Tommasi, D., Widlansky, M. J., Barrie, D., Capotondi, A., Cheng, W., Di Lorenzo, E., Edwards, C., Fiechter, J., Fratantoni, P., Hazen, E. L., Hermann, A. J., Kumar, A., Miller, A. J., Pirhalla, D., Buil, M. P., Ray, S., Sheridan, S. C., Subramanian, A., Thompson, P., Thorne, L., Annamalai, H., Aydin, K., Bograd, S. J., Griffis, R. B., Kearney, K., Kim, H., Mariotti, A., Merrifield, M., & Rykaczewski, R. Seasonal-to-interannual prediction of North American coastal marine ecosystems: forecast methods, mechanisms of predictability, and priority developments. Progress in Oceanography, 183, (2020): 102307, doi:10.1016/j.pocean.2020.102307.Marine ecosystem forecasting is an area of active research and rapid development. Promise has been shown for skillful prediction of physical, biogeochemical, and ecological variables on a range of timescales, suggesting potential for forecasts to aid in the management of living marine resources and coastal communities. However, the mechanisms underlying forecast skill in marine ecosystems are often poorly understood, and many forecasts, especially for biological variables, rely on empirical statistical relationships developed from historical observations. Here, we review statistical and dynamical marine ecosystem forecasting methods and highlight examples of their application along U.S. coastlines for seasonal-to-interannual (1–24 month) prediction of properties ranging from coastal sea level to marine top predator distributions. We then describe known mechanisms governing marine ecosystem predictability and how they have been used in forecasts to date. These mechanisms include physical atmospheric and oceanic processes, biogeochemical and ecological responses to physical forcing, and intrinsic characteristics of species themselves. In reviewing the state of the knowledge on forecasting techniques and mechanisms underlying marine ecosystem predictability, we aim to facilitate forecast development and uptake by (i) identifying methods and processes that can be exploited for development of skillful regional forecasts, (ii) informing priorities for forecast development and verification, and (iii) improving understanding of conditional forecast skill (i.e., a priori knowledge of whether a forecast is likely to be skillful). While we focus primarily on coastal marine ecosystems surrounding North America (and the U.S. in particular), we detail forecast methods, physical and biological mechanisms, and priority developments that are globally relevant.This study was supported by the NOAA Climate Program Office’s Modeling, Analysis, Predictions, and Projections (MAPP) program through grants NA17OAR4310108, NA17OAR4310112, NA17OAR4310111, NA17OAR4310110, NA17OAR4310109, NA17OAR4310104, NA17OAR4310106, and NA17OAR4310113. This paper is a product of the NOAA/MAPP Marine Prediction Task Force

    Better Regional Ocean Observing Through Cross-National Cooperation: A Case Study From the Northeast Pacific

    Get PDF
    The ocean knows no political borders. Ocean processes, like summertime wind-driven upwelling, stretch thousands of kilometers along the Northeast Pacific (NEP) coast. This upwelling drives marine ecosystem productivity and is modulated by weather systems and seasonal to interdecadal ocean-atmosphere variability. Major ocean currents in the NEP transport water properties such as heat, fresh water, nutrients, dissolved oxygen, pCO2, and pH close to the shore. The eastward North Pacific Current bifurcates offshore in the NEP, delivering open-ocean signals south into the California Current and north into the Gulf of Alaska. There is a large and growing number of NEP ocean observing elements operated by government agencies, Native American Tribes, First Nations groups, not-for-profit organizations, and private entities. Observing elements include moored and mobile platforms, shipboard repeat cruises, as well as land-based and estuarine stations. A wide range of multidisciplinary ocean sensors are deployed to track, for example, upwelling, downwelling, ocean productivity, harmful algal blooms, ocean acidification and hypoxia, seismic activity and tsunami wave propagation. Data delivery to shore and observatory controls are done through satellite and cell phone communication, and via seafloor cables. Remote sensing from satellites and land-based coastal radar provide broader spatial coverage, while numerical circulation and biogeochemical modeling complement ocean observing efforts. Models span from the deep ocean into the inland Salish Sea and estuaries. NEP ocean observing systems are used to understand regional processes and, together with numerical models, provide ocean forecasts. By sharing data, experiences and lessons learned, the regional ocean observatory is better than the sum of its parts

    Skillful multiyear prediction of marine habitat shifts jointly constrained by ocean temperature and dissolved oxygen

    No full text
    Abstract The ability to anticipate marine habitat shifts responding to climate variability has high scientific and socioeconomic value. Here we quantify interannual-to-decadal predictability of habitat shifts by combining trait-based aerobic habitat constraints with a suite of initialized retrospective Earth System Model forecasts, for diverse marine ecotypes in the North American Large Marine Ecosystems. We find that aerobic habitat viability, defined by joint constraints of temperature and oxygen on organismal energy balance, is potentially predictable in the upper-600 m ocean, showing a substantial improvement over a simple persistence forecast. The skillful multiyear predictability is dominated by the oxygen component in most ecosystems, yielding higher predictability than previously estimated based on temperature alone. Notable predictability differences exist among ecotypes differing in temperature sensitivity of hypoxia vulnerability, especially along the northeast coast with predictability timescale ranging from 2 to 10 years. This tool will be critical in predicting marine habitat shifts in face of a changing climate

    Short Time-Scale Variability of Ammonium, Nitrate, and Nitrogen Loss Dynamics During an Upwelling-Induced Bloom at the Oregon Shelf

    No full text
    22 pages, 11 figures, 1 table, supporting information https://doi.org/10.1029/2022JC019025.-- Data Availability Statement: The high-frequency oceanographic dataset obtained with the supersucker and on board nutrient analysis during SUCCES3 cruise in the Oregon coast, used to describe short time-scale variability ammonium and nitrate, as well as to calculate NO and nitrogen loss in the study, are available at Zenodo via https://zenodo.org/record/7198113 with a Creative Commons Attribution 4.0 International LicenseAmmonium, a key intermediate nutrient, is typically low to undetectable on the Oregon coast, particularly as active upwelling delivers high onshore flow of ammonium-poor waters. However, during bloom and post-bloom conditions large ammonium concentrations and uptake rates have been described. High-frequency on board nitrate + nitrite and ammonium analysis synchronized with continuous data from a towed profiling vehicle (equipped with in situ temperature, salinity, dissolved oxygen, and beam attenuation sensors), allowed us to describe coupled high-resolution physico-chemical dynamics of inorganic nitrogen in seven cross-shelf transects, over several days, during an active phytoplankton bloom following cessation of upwelling favorable winds. We present first-of-their-kind high-resolution cross-sections showing a build-up, both within a thin plume of onshore-originated water, and in mid-to-bottom on-shore water columns, from undetectable values to up to 8 ”M of ammonium. The plume extended across the shelf at mid-depth and was identified in all transects. We also detected a decrease of nitrate in distinct water masses close to the mid-shelf seabed, associated with low dissolved oxygen, and identified and quantified the amount of nitrogen lost. We found that nitrogen loss was minimal on the first days of relaxation conditions, and increased up to 12 ÎŒM off Newport. Combining nitrogen fluxes from benthic incubation chambers and N loss calculated with the NO tracer, we estimated that denitrification in sediments could not account for all N loss, requiring 22%–86% to occur elsewhere. Close association of N loss with particle-rich, low O2 waters suggests the possibility that particle-aggregate micro-environments could provide additional sites for water column denitrificationThis work was supported by a National Science Foundation under Grant OCE-0628700With the institutional support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S)Peer reviewe
    corecore