2,747 research outputs found

    No DNN Left Behind: Improving Inference in the Cloud with Multi-Tenancy

    Get PDF
    With the rise of machine learning, inference on deep neural networks (DNNs) has become a core building block on the critical path for many cloud applications. Applications today rely on isolated ad-hoc deployments that force users to compromise on consistent latency, elasticity, or cost-efficiency, depending on workload characteristics. We propose to elevate DNN inference to be a first class cloud primitive provided by a shared multi-tenant system, akin to cloud storage, and cloud databases. A shared system enables cost-efficient operation with consistent performance across the full spectrum of workloads. We argue that DNN inference is an ideal candidate for a multi-tenant system because of its narrow and well-defined interface and predictable resource requirements

    Non equilibrium statistical physics with fictitious time

    Full text link
    Problems in non equilibrium statistical physics are characterized by the absence of a fluctuation dissipation theorem. The usual analytic route for treating these vast class of problems is to use response fields in addition to the real fields that are pertinent to a given problem. This line of argument was introduced by Martin, Siggia and Rose. We show that instead of using the response field, one can, following the stochastic quantization of Parisi and Wu, introduce a fictitious time. In this extra dimension a fluctuation dissipation theorem is built in and provides a different outlook to problems in non equilibrium statistical physics.Comment: 4 page

    Double-layer shocks in a magnetized quantum plasma

    Full text link
    The formation of small but finite amplitude electrostatic shocks in the propagation of quantum ion-acoustic waves (QIAWs) obliquely to an external magnetic field is reported in a quantum electron-positron-ion (e-p-i) plasma. Such shocks are seen to have double-layer (DL) structures composed of the compressive and accompanying rarefactive slow-wave fronts. Existence of such DL shocks depends critically on the quantum coupling parameter HH associated with the Bohm potential and the positron to electron density ratio ÎŽ\delta. The profiles may, however, steepen initially and reach a steady state with a number of solitary waves in front of the shocks. Such novel DL shocks could be a good candidate for particle acceleration in intense laser-solid density plasma interaction experiments as well as in compact astrophysical objects, e.g., magnetized white dwarfs.Comment: 4 pages, 1 figure (to appear in Physical Review E

    Gauge Symmetries on Ξ\theta-Deformed Spaces

    Full text link
    A Hamiltonian formulation of gauge symmetries on noncommutative (Ξ\theta deformed) spaces is discussed. Both cases- star deformed gauge transformation with normal coproduct and undeformed gauge transformation with twisted coproduct- are considered. While the structure of the gauge generator is identical in either case, there is a difference in the computation of the graded Poisson brackets that yield the gauge transformations. Our analysis provides a novel interpretation of the twisted coproduct for gauge transformations.Comment: LaTex, 20 pages, no figure

    Ultrasensitive Displacement Noise Measurement of Carbon Nanotube Mechanical Resonators

    Get PDF
    Mechanical resonators based on a single carbon nanotube are exceptional sensors of mass and force. The force sensitivity in these ultra-light resonators is often limited by the noise in the detection of the vibrations. Here, we report on an ultra-sensitive scheme based on a RLC resonator and a low-temperature amplifier to detect nanotube vibrations. We also show a new fabrication process of electromechanical nanotube resonators to reduce the separation between the suspended nanotube and the gate electrode down to ∌150\sim 150~nm. These advances in detection and fabrication allow us to reach 0.5 pm/Hz0.5~\mathrm{pm}/\sqrt{\mathrm{Hz}} displacement sensitivity. Thermal vibrations cooled cryogenically at 300~mK are detected with a signal-to-noise ratio as high as 17~dB. We demonstrate 4.3 zN/Hz4.3~\mathrm{zN}/\sqrt{\mathrm{Hz}} force sensitivity, which is the best force sensitivity achieved thus far with a mechanical resonator. Our work is an important step towards imaging individual nuclear spins and studying the coupling between mechanical vibrations and electrons in different quantum electron transport regimes.Comment: 9 pages, 5 figure

    Inelastic scattering of protons from 6,8^{6,8}He and 7,11^{7,11}Li in a folding model approach

    Get PDF
    The proton-inelastic scattering from 6,8^{6,8}He and 7,11^{7,11}Li nuclei are studied in a folding model approach. A finite-range, momentum, density and isospin dependent nucleon-nucleon interaction (SBM) is folded with realistic density distributions of the above nuclei. The renormalization factors NR_R and NI_I on the real and volume imaginary part of the folded potentials are obtained by analyzing the respective elastic scattering data and kept unaltered for the inelastic analysis at the same energy. The form factors are generated by taking derivatives of the folded potentials and therefore required renormalizations. The ÎČ\beta values are extracted by fitting the p + 6,8^{6,8}He,7,11^{7,11}Li inelastic angular distributions. The present analysis of p + 8^8He inelastic scattering to the 3.57 MeV excited state, including unpublished forward angle data (RIKEN) confirms L = 2 transition. Similar analysis of the p + 6^6He inelastic scattering angular distribution leading to the 1.8 MeV (L = 2) excited state fails to satisfactorily reproduce the data.Comment: one LaTeX file, five PostScript figure

    Microstructure/phase evolution in mechanical alloying/milling of stainless steel and aluminum powder blends

    Get PDF
    The present study aims to examine the phase evolution in blends comprising different proportions of stainless steel (316SS) and Al (0, 25, 65, and 85 wt pct) powders during high-energy ball milling through X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and high-resolution transmission electron microscopy (HRTEM). An attempt has also been made to study the hardness value of the bulk samples obtained by hot pressing the ball-milled powder blend at suitable temperature and pressure. The results on changes in the constituent phases and hardness value of the bulk samples obtained after consolidation of ball-milled alloy using the high-pressure technique have been reported
    • 

    corecore