5 research outputs found

    Optical and radiometric models of the NOMAD instrument part II: The infrared channels - SO and LNO

    Get PDF

    Advanced Examination Techniques Applied to the Assessment of Vacuum Pressure Impregnation (VPI) of ITER Correction Coils

    No full text
    The ITER Magnet System includes a set of 18 superconducting correction coils (CC) which are used to compensate the error field modes arising from geometrical deviations caused by manufacturing and assembly tolerances. The turn and ground insulation are electrically insulated with a multi-layer fiberglass polyimide interleaved composite, impregnated with epoxy resin using vacuum pressure impregnation (VPI). Adequate high voltage insulation (5 kV), mechanical strength and rigidity of the winding pack should be achieved after impregnation and curing of the insulation system. VPI is an effective process to avoid defects such dry spots and incomplete wet out. This insulation technology has also been developed since several years for application to large superconducting coils and more recently to ITER CC. It allows the coils to be impregnated without impacting on their functional characteristics. One of the critical challenges associated with the construction of the CC is the qualification of the VPI insulation. Sections issued from representative VPI test samples with real scale side correction Coil (SCC) cross-section have been delivered and characterized at CERN. High resolution micro-optical inspections have been carried out on large areas through digital microscopy. The aim was to identify lack of impregnation, areas of pure resin and void entrapments. The areas near the filling fibre glass rope received special attention. High precision dimensional and geometrical assessments have been performed with the help of image analysis. Compression and pull-out tests have been also carried out. Finally, high-resolution 3D-computed tomography has been applied for a full volumetric inspection of the sections, enabling the reconstruction in three dimensions of the VPI samples and allowing to fully detect, confirm, and image the volume defects already identified by micro-optical observations

    Preliminary Mechanical Characterization of Thermal Filters for the X-IFU Instrument on Athena

    No full text
    The X-ray Integral Field Unit (X-IFU) is one of the two instruments of the Athena astrophysics space mission approved by ESA in the Cosmic Vision Science Program. The X-IFU consists of a large array of TES microcalorimeters that will operate at ~ 50 mK inside a sophisticated cryostat. A set of thin filters, highly transparent to X-rays, will be mounted on the cryostat thermal shields in order to attenuate the IR radiative load, to attenuate RF electromagnetic interferences, and to protect the detector from contamination. In this paper, we present the current thermal filters design, describe the filter samples developed/procured so far, and present preliminary results from the ongoing characterization tests

    Stromal protein βig-h3 reprogrammes tumour microenvironment in pancreatic cancer

    No full text
    International audiencePancreatic cancer is associated with an abundant stromal reaction leading to immune escape and tumour growth. This massive stroma drives the immune escape in the tumour. We aimed to study the impact of βig-h3 stromal protein in the modulation of the antitumoural immune response in pancreatic cancer
    corecore