446 research outputs found

    Development and Preliminary Evaluation of a Spray Deposition Sensing System for Improving Pesticide Application

    Get PDF
    An electronic, resistance-based sensor array and data acquisition system was developed to measure spray deposition from hydraulic nozzles. The sensor surface consisted of several parallel tin plated copper traces of varying widths with varying gap widths. The system contained an embedded microprocessor to monitor output voltage corresponding to spray deposition every second. In addition, a wireless module was used to transmit the voltage values to a remote laptop. Tests were conducted in two stages to evaluate the performance of the sensor array in an attempt to quantify the spray deposition. Initial tests utilized manual droplet placement on the sensor surface to determine the effects of temperature and droplet size on voltage output. Secondary testing utilized a spray chamber to pass nozzles at different speeds above the sensor surface to determine if output varied based on different application rates or spray droplet classification. Results from this preliminary analysis indicated that manual droplets of 5 and 10 mL resulted in significantly different values from the sensors while temperature did not consistently affect output. Spray chamber test results indicated that different application rates and droplet sizes could be determined using the sensor array

    Development and Preliminary Evaluation of an Integrated Individual Nozzle Direct Injection and Carrier Flow Rate Control System for Pesticide Applications

    Get PDF
    Direct injection systems for agricultural spray applications continue to present challenges in terms of commercialization and adoption by end users. Such systems have typically suffered from lag time and mixing uniformity issues, which have outweighed the potential benefits of keeping chemical and carrier separate or reducing improper tank-mixed concentration by eliminating operator measurements. The proposed system sought to combine high-pressure direct nozzle injection with an automated variable-flow nozzle to improve chemical mixing and response times. The specific objectives were to: (1) integrate a high-pressure direct nozzle injection system with variable-flow carrier control into a prototype for testing, (2) assess the chemical metering accuracy and proper mixing at different combinations of injection valve frequency and duty cycle along with chemical pressure, and (3) assess the ability of the control system to ensure proper chemical dilutions and concentrations in the nozzle effluent resulting from step changes in target application rates. Laboratory experiments were conducted using the combined system. Results of these experiments showed that the open-loop control of the injectors could provide a means of accurately metering the chemical concentrate into the carrier stream. Chemical injection rates could be achieved with an average error of 5.4% compared to the target rates. Injection at higher duty cycles resulted in less error in the chemical concentration predictions. Discrete Fourier transform analysis showed that the injection frequency was noticeable in the nozzle effluent when the injector was operated at 3.04 MPa and 5 Hz (particularly at lower duty cycles). Increasing the injection pressure and operating frequency to 5.87 MPa and 7 Hz, respectively, improved mixing, as the injection frequency component was no longer noticed in the effluent samples. The variable-flow nozzle was able to maintain appropriate carrier flow rates to achieve product label chemical concentrations. In one case, the maximum allowable concentrate was exceeded, although the nozzle was able to recover in 0.5 s. Steady-state errors ranged from 2.5% to 7.5% for chemical concentrations compared to the selected chemical to carrier ratio (0.03614). This test scenario represented an application rate of 4.68 L ha-1 with velocity increases from 4.0 to 7.1 m s-1 and decreases from 7.1 to 4.0 m s-1, which were typical of the example field application data

    Development and Preliminary Evaluation of a Spray Deposition Sensing System for Improving Pesticide Application

    Get PDF
    An electronic, resistance-based sensor array and data acquisition system was developed to measure spray deposition from hydraulic nozzles. The sensor surface consisted of several parallel tin plated copper traces of varying widths with varying gap widths. The system contained an embedded microprocessor to monitor output voltage corresponding to spray deposition every second. In addition, a wireless module was used to transmit the voltage values to a remote laptop. Tests were conducted in two stages to evaluate the performance of the sensor array in an attempt to quantify the spray deposition. Initial tests utilized manual droplet placement on the sensor surface to determine the effects of temperature and droplet size on voltage output. Secondary testing utilized a spray chamber to pass nozzles at different speeds above the sensor surface to determine if output varied based on different application rates or spray droplet classification. Results from this preliminary analysis indicated that manual droplets of 5 and 10 μL resulted in significantly different values from the sensors while temperature did not consistently affect output. Spray chamber test results indicated that different application rates and droplet sizes could be determined using the sensor array

    Recalibration Methodology to Compensate for Changing Fluid Properties in an Individual Nozzle Direct Injection Systems

    Get PDF
    Limited advancement of direct injection pesticide application systems has been made in recent years, which has hindered further commercialization of this technology. One approach to solving the lag and mixing issues typically associated with injection-based systems is high-pressure individual nozzle injection. However, accurate monitoring of the chemical concentrate flow rate can pose a challenge due to the high pressure, low flow, and changing viscosities of the fluid. A methodology was developed for recalibrating high-pressure chemical concentrate injectors to compensate for fluid property variations and evaluate the performance of this technique for operating injectors in an open-loop configuration. Specific objectives were to (1) develop a method for continuous recalibration of the chemical concentrate injectors to ensure accurate metering of chemicals of varying viscosities and (2) evaluate the recalibration method for estimating individual injector flow rates from a system of multiple injectors to assess potential errors. Test results indicated that the recalibration method was able to compensate for changes in fluid kinematic viscosity (e.g., from temperature changes and/or product variation). Errors were less than 3.4% for the minimum injector duty cycle (DCi) (at 10%) and dropped 0.2% for the maximum DCi (at 90%) for temperature changes of up to 20°C. While larger temperature changes may be expected, these test results showed that the proposed method could be successfully implemented to meet desired injection rates. Because multiple injectors would be used in commercial deployment of this technology, a method was developed to calculate the desired injector flow rate using initial injector calibration factors. Using this multi-injector recalibration method, errors ranged from 0.23% to 0.66% between predicted and actual flow rates for all three injectors

    Recalibration Methodology to Compensate for Changing Fluid Properties in an Individual Nozzle Direct Injection Systems

    Get PDF
    Limited advancement of direct injection pesticide application systems has been made in recent years, which has hindered further commercialization of this technology. One approach to solving the lag and mixing issues typically associated with injection-based systems is high-pressure individual nozzle injection. However, accurate monitoring of the chemical concentrate flow rate can pose a challenge due to the high pressure, low flow, and changing viscosities of the fluid. A methodology was developed for recalibrating high-pressure chemical concentrate injectors to compensate for fluid property variations and evaluate the performance of this technique for operating injectors in an open-loop configuration. Specific objectives were to (1) develop a method for continuous recalibration of the chemical concentrate injectors to ensure accurate metering of chemicals of varying viscosities and (2) evaluate the recalibration method for estimating individual injector flow rates from a system of multiple injectors to assess potential errors. Test results indicated that the recalibration method was able to compensate for changes in fluid kinematic viscosity (e.g., from temperature changes and/or product variation). Errors were less than 3.4% for the minimum injector duty cycle (DCi) (at 10%) and dropped 0.2% for the maximum DCi (at 90%) for temperature changes of up to 20°C. While larger temperature changes may be expected, these test results showed that the proposed method could be successfully implemented to meet desired injection rates. Because multiple injectors would be used in commercial deployment of this technology, a method was developed to calculate the desired injector flow rate using initial injector calibration factors. Using this multi-injector recalibration method, errors ranged from 0.23% to 0.66% between predicted and actual flow rates for all three injectors

    Recalibration Methodology to Compensate for Changing Fluid Properties in an Individual Nozzle Direct Injection Systems

    Get PDF
    Limited advancement of direct injection pesticide application systems has been made in recent years, which has hindered further commercialization of this technology. One approach to solving the lag and mixing issues typically associated with injection-based systems is high-pressure individual nozzle injection. However, accurate monitoring of the chemical concentrate flow rate can pose a challenge due to the high pressure, low flow, and changing viscosities of the fluid. A methodology was developed for recalibrating high-pressure chemical concentrate injectors to compensate for fluid property variations and evaluate the performance of this technique for operating injectors in an open-loop configuration. Specific objectives were to (1) develop a method for continuous recalibration of the chemical concentrate injectors to ensure accurate metering of chemicals of varying viscosities and (2) evaluate the recalibration method for estimating individual injector flow rates from a system of multiple injectors to assess potential errors. Test results indicated that the recalibration method was able to compensate for changes in fluid kinematic viscosity (e.g., from temperature changes and/or product variation). Errors were less than 3.4% for the minimum injector duty cycle (DCi) (at 10%) and dropped 0.2% for the maximum DCi (at 90%) for temperature changes of up to 20°C. While larger temperature changes may be expected, these test results showed that the proposed method could be successfully implemented to meet desired injection rates. Because multiple injectors would be used in commercial deployment of this technology, a method was developed to calculate the desired injector flow rate using initial injector calibration factors. Using this multi-injector recalibration method, errors ranged from 0.23% to 0.66% between predicted and actual flow rates for all three injectors

    Flow, Spray Pattern, And Droplet Spectra Characteristics Of An Electronically Actuated Variable-Orifice Nozzle

    Get PDF
    The purpose of this study was to develop and evaluate the flow rate, spray pattern, and droplet spectra characteristics of an actively controlled variable-orifice nozzle at constant carrier pressures. A commercially available variable- orifice nozzle (VariTarget) was modified to allow for direct electromechanical control of the metering stem. The modified system was tested at five carrier pressures ranging from 138 to 414 kPa and five metering stem (and thus orifice) positions. The metering stem position range was chosen because it provided a linear response in flow rate at each carrier pressure. Flow rate testing indicated a turndown ratio of 2.4:1 at each carrier pressure, with a total turndown ratio of 4.8:1 across the range of carrier pressures using the selected metering stem positions. Spray pattern testing indicated acceptable coefficients of variation for the metering stem positions and carrier pressures for nozzle spacings of 38.1 and 51.0 cm. Droplet spectra test results showed that the particle sizes remained in the range of extremely coarse to ultra coarse for all metering stem positions and carrier pressures. Orifice control using the modified system resulted in slightly larger droplet sizes compared to the original spring-actuated nozzle; however, the potential for spray drift would be reduced. The results of this study show that active control of the VT nozzle metering stem could provide potential for improvements in pesticide application. Nozzle flow rates could be controlled via the proposed system with little negative effects on spray pattern or droplet spectra. In addition to compensating for sprayer ground speed changes, a system consisting of these nozzles could potentially be used to solve application errors generated from sprayer turning movements

    Global linear stability analysis of kinetic Trapped Ion Mode (TIM) turbulence in tokamak plasma using spectral method

    Full text link
    Trapped ion modes (TIM) which belong to the family of ion temperature gradient (ITG) modes, is one of the important ingredients in heat turbulent transport at the ion scale in tokamak plasmas. It is essential to properly estimate their linear growth rate to understand their influence on ion-scale turbulent transport. A global linear analysis of a reduced gyro-bounce kinetic model for trapped particle modes is performed, and a spectral method is proposed to solve the dispersion relation. Importantly, the radial profile of the particle drift velocity is taken into account in the linear analysis by considering the exact magnetic flux {\psi} dependency of the equilibrium Hamiltonian H_{eq}({\psi}) in the quasi-neutrality equation and equilibrium gyro-bounce averaged distribution function F_{eq} . Using this spectral method, linear growth-rates of TIM instability in presence of different temperature profiles and precession frequencies of trapped ions, with an approximated constant Hamiltonian and the exact {\psi} dependent equilibrium Hamiltonian, are investigated. The growth-rate depends on the logarithmic gradient of temperature \kappa_{T} , density \kappa_{n} and equilibrium Hamiltonian \kappa_{\Lambda} . With the exact {\psi} dependent Hamiltonian, the growth rates and potential profiles are modified significantly, compared to the cases with approximated constant Hamiltonian. All the results from the global linear analysis agree with a semi-Lagrangian based linear Vlasov solver with a good accuracy. This spectral method is very fast and requires very less computation resources compared to a linear version of Vlasov-solver based on a semi-Lagrangian scheme

    A Computational Tool for Estimating Off-Target Application Areas in Agricultural Fields

    Get PDF
    A computational method for estimating off-target application areas based on the machine-controlled section width and the field shape was developed and implemented in software with a graphical user interface written in the MatLab environment. The program, which is called the Field Coverage Analysis Tool (FieldCAT), includes three modules: data import, data preparation, and coverage analysis. Nine field boundaries were evaluated to test the software using controlled section widths from 0.5 to 27 m and various swath orientations. The estimated off-target application area from the widest section width varied from 9% to 24% depending on the shape and size of the field boundary and was reduced to less than 1% with the smallest section width. The simulated results were also compared to actual field data from 25 different fields. The FieldCAT software tool was able to provide reliable quantitative estimates of the off-target application of inputs that would occur because of limited resolution of the machine-controlled section width and the path orientation in different field shapes

    United States Patent Application Publication

    Get PDF
    A multiple robot control architecture including a plurality of robotic agricultural machines including a first and second robotic agricultural machine. Each robotic agricultural machine including at least one controller configured to implement a plurality of finite state machines Within an individual robot control architecture (IRCA) and a global information module (GIM) communicatively coupled to the IRCA. The GIMs of the first and second robotic agricultural machines being configured to cooperate to cause said first robotic agricultural machine and said second agricultural machine to perform at least one agricultural task
    • …
    corecore