10 research outputs found

    Pinching parameters for open (super) strings

    Full text link
    We present an approach to the parametrization of (super) Schottky space obtained by sewing together three-punctured discs with strips. Different cubic ribbon graphs classify distinct sets of pinching parameters; we show how they are mapped onto each other. The parametrization is particularly well-suited to describing the region within (super) moduli space where open bosonic or Neveu-Schwarz string propagators become very long and thin, which dominates the IR behaviour of string theories. We show how worldsheet objects such as the Green's function converge to graph theoretic objects such as the Symanzik polynomials in the αâ€Č→0\alpha ' \to 0 limit, allowing us to see how string theory reproduces the sum over Feynman graphs. The (super) string measure takes on a simple and elegant form when expressed in terms of these parameters.Comment: 68 pages, 31 figure

    Two-loop Yang-Mills diagrams from superstring amplitudes

    Get PDF
    Starting from the superstring amplitude describing interactions among D-branes with a constant world-volume field strength, we present a detailed analysis of how the open string degeneration limits reproduce the corresponding field theory Feynman diagrams. A key ingredient in the string construction is represented by the twisted (Prym) super differentials, as their periods encode the information about the background field. We provide an efficient method to calculate perturbatively the determinant of the twisted period matrix in terms of sets of super-moduli appropriate to the degeneration limits. Using this result we show that there is a precise one-to-one correspondence between the degeneration of different factors in the superstring amplitudes and one-particle irreducible Feynman diagrams capturing the gauge theory effective action at the two-loop level.Comment: 42 pages plus appendices, 10 figure

    Pregnancy and neonatal outcomes of COVID-19: The PAN-COVID study

    Get PDF
    Objective To assess perinatal outcomes for pregnancies affected by suspected or confirmed SARS-CoV-2 infection. Methods Prospective, web-based registry. Pregnant women were invited to participate if they had suspected or confirmed SARS-CoV-2 infection between 1st January 2020 and 31st March 2021 to assess the impact of infection on maternal and perinatal outcomes including miscarriage, stillbirth, fetal growth restriction, pre-term birth and transmission to the infant. Results Between April 2020 and March 2021, the study recruited 8239 participants who had suspected or confirmed SARs-CoV-2 infection episodes in pregnancy between January 2020 and March 2021. Maternal death affected 14/8197 (0.2%) participants, 176/8187 (2.2%) of participants required ventilatory support. Pre-eclampsia affected 389/8189 (4.8%) participants, eclampsia was reported in 40/ 8024 (0.5%) of all participants. Stillbirth affected 35/8187 (0.4 %) participants. In participants delivering within 2 weeks of delivery 21/2686 (0.8 %) were affected by stillbirth compared with 8/4596 (0.2 %) delivering ≄ 2 weeks after infection (95 % CI 0.3–1.0). SGA affected 744/7696 (9.3 %) of livebirths, FGR affected 360/8175 (4.4 %) of all pregnancies. Pre-term birth occurred in 922/8066 (11.5%), the majority of these were indicated pre-term births, 220/7987 (2.8%) participants experienced spontaneous pre-term births. Early neonatal deaths affected 11/8050 livebirths. Of all neonates, 80/7993 (1.0%) tested positive for SARS-CoV-2. Conclusions Infection was associated with indicated pre-term birth, most commonly for fetal compromise. The overall proportions of women affected by SGA and FGR were not higher than expected, however there was the proportion affected by stillbirth in participants delivering within 2 weeks of infection was significantly higher than those delivering ≄ 2 weeks after infection. We suggest that clinicians’ threshold for delivery should be low if there are concerns with fetal movements or fetal heart rate monitoring in the time around infection

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Schwinger-type parametrization of open string worldsheets

    No full text
    A parametrization of (super) moduli space near the corners corresponding to bosonic or Neveu–Schwarz open string degenerations is introduced for worldsheets of arbitrary topology. With this parametrization, Feynman graph polynomials arise as the αâ€Č→0 limit of objects on moduli space. Furthermore, the integration measures of string theory take on a very simple and elegant form

    Pregnancy and neonatal outcomes of COVID -19: coreporting of common outcomes from PAN-COVID and AAP-SONPM registries

    No full text
    Objective Few large cohort studies have reported data on maternal, fetal, perinatal and neonatal outcomes associated with severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection in pregnancy. We report the outcome of infected pregnancies from a collaboration formed early during the pandemic between the investigators of two registries, the UK and Global Pregnancy and Neonatal outcomes in COVID‐19 (PAN‐COVID) study and the American Academy of Pediatrics (AAP) Section on Neonatal–Perinatal Medicine (SONPM) National Perinatal COVID‐19 Registry. Methods This was an analysis of data from the PAN‐COVID registry (1 January to 25 July 2020), which includes pregnancies with suspected or confirmed maternal SARS‐CoV‐2 infection at any stage in pregnancy, and the AAP‐SONPM National Perinatal COVID‐19 registry (4 April to 8 August 2020), which includes pregnancies with positive maternal testing for SARS‐CoV‐2 from 14 days before delivery to 3 days after delivery. The registries collected data on maternal, fetal, perinatal and neonatal outcomes. The PAN‐COVID results are presented overall for pregnancies with suspected or confirmed SARS‐CoV‐2 infection and separately in those with confirmed infection. Results We report on 4005 pregnant women with suspected or confirmed SARS‐CoV‐2 infection (1606 from PAN‐COVID and 2399 from AAP‐SONPM). For obstetric outcomes, in PAN‐COVID overall and in those with confirmed infection in PAN‐COVID and AAP‐SONPM, respectively, maternal death occurred in 0.5%, 0.5% and 0.2% of cases, early neonatal death in 0.2%, 0.3% and 0.3% of cases and stillbirth in 0.5%, 0.6% and 0.4% of cases. Delivery was preterm (< 37 weeks' gestation) in 12.0% of all women in PAN‐COVID, in 16.1% of those women with confirmed infection in PAN‐COVID and in 15.7% of women in AAP‐SONPM. Extreme preterm delivery (< 27 weeks' gestation) occurred in 0.5% of cases in PAN‐COVID and 0.3% in AAP‐SONPM. Neonatal SARS‐CoV‐2 infection was reported in 0.9% of all deliveries in PAN‐COVID overall, in 2.0% in those with confirmed infection in PAN‐COVID and in 1.8% in AAP‐SONPM; the proportions of neonates tested were 9.5%, 20.7% and 87.2%, respectively. The rates of a small‐for‐gestational‐age (SGA) neonate were 8.2% in PAN‐COVID overall, 9.7% in those with confirmed infection and 9.6% in AAP‐SONPM. Mean gestational‐age‐adjusted birth‐weight Z‐scores were −0.03 in PAN‐COVID and −0.18 in AAP‐SONPM. Conclusions The findings from the UK and USA registries of pregnancies with SARS‐CoV‐2 infection were remarkably concordant. Preterm delivery affected a higher proportion of women than expected based on historical and contemporaneous national data. The proportions of pregnancies affected by stillbirth, a SGA infant or early neonatal death were comparable to those in historical and contemporaneous UK and USA data. Although maternal death was uncommon, the rate was higher than expected based on UK and USA population data, which is likely explained by underascertainment of women affected by milder or asymptomatic infection in pregnancy in the PAN‐COVID study, although not in the AAP‐SONPM study. The data presented support strong guidance for enhanced precautions to prevent SARS‐CoV‐2 infection in pregnancy, particularly in the context of increased risks of preterm delivery and maternal mortality, and for priority vaccination of pregnant women and women planning pregnancy. Copyright © 2021 ISUOG. Published by John Wiley & Sons Ltd
    corecore