13,087 research outputs found

    The Efficiency Consequences of Local Revenue Equalization: Tax Competition and Tax Distortions

    Get PDF
    This paper shows how a popular system of federal revenue equalization grants can limit tax competition among subnational governments, correct fiscal externalities, and increase government spending. Remarkably, an equalization grant can implement efficient policy choices by regional governments, regardless of a wide variety of differences in regional tax capacity, tastes for public spending, and population. Thus, compared to other corrective devices, equalization achieves “robust” implementation. If aggregate tax bases are elastic, however, equalization leads to excessive taxation. Efficiency can be achieved by a modified formula that equalizes a fraction of local revenue deficiencies equal to the fraction of taxes that are shifted backward to factor suppliers.tax competition, intergovernmental grants

    Numerical calculation of three-point branched covers of the projective line

    Get PDF
    We exhibit a numerical method to compute three-point branched covers of the complex projective line. We develop algorithms for working explicitly with Fuchsian triangle groups and their finite index subgroups, and we use these algorithms to compute power series expansions of modular forms on these groups.Comment: 58 pages, 24 figures; referee's comments incorporate

    Quantum Computation by Adiabatic Evolution

    Get PDF
    We give a quantum algorithm for solving instances of the satisfiability problem, based on adiabatic evolution. The evolution of the quantum state is governed by a time-dependent Hamiltonian that interpolates between an initial Hamiltonian, whose ground state is easy to construct, and a final Hamiltonian, whose ground state encodes the satisfying assignment. To ensure that the system evolves to the desired final ground state, the evolution time must be big enough. The time required depends on the minimum energy difference between the two lowest states of the interpolating Hamiltonian. We are unable to estimate this gap in general. We give some special symmetric cases of the satisfiability problem where the symmetry allows us to estimate the gap and we show that, in these cases, our algorithm runs in polynomial time.Comment: 24 pages, 12 figures, LaTeX, amssymb,amsmath, BoxedEPS packages; email to [email protected]

    Error estimates for density-functional theory predictions of surface energy and work function

    Get PDF
    Density-functional theory (DFT) predictions of materials properties are becoming ever more widespread. With increased use comes the demand for estimates of the accuracy of DFT results. In view of the importance of reliable surface properties, this work calculates surface energies and work functions for a large and diverse test set of crystalline solids. They are compared to experimental values by performing a linear regression, which results in a measure of the predictable and material-specific error of the theoretical result. Two of the most prevalent functionals, the local density approximation (LDA) and the Perdew-Burke-Ernzerhof parametrization of the generalized gradient approximation (PBE-GGA), are evaluated and compared. Both LDA and GGA-PBE are found to yield accurate work functions with error bars below 0.3 eV, rivaling the experimental precision. LDA also provides satisfactory estimates for the surface energy with error bars smaller than 10%, but GGA-PBE significantly underestimates the surface energy for materials with a large correlation energy

    A Rare, Late Complication after Automated Implantable Cardioverter-Defibrillator Placement

    Get PDF
    This article describes an interesting case of automated implantable cardioverter defibrillator (AICD) extrusion fifteen months after implantation. The case report is followed by a discussion of the causes and treatment of skin erosion following pacemaker/AICD insertion

    Dimensionality Reduction for k-Means Clustering and Low Rank Approximation

    Full text link
    We show how to approximate a data matrix A\mathbf{A} with a much smaller sketch A~\mathbf{\tilde A} that can be used to solve a general class of constrained k-rank approximation problems to within (1+ϵ)(1+\epsilon) error. Importantly, this class of problems includes kk-means clustering and unconstrained low rank approximation (i.e. principal component analysis). By reducing data points to just O(k)O(k) dimensions, our methods generically accelerate any exact, approximate, or heuristic algorithm for these ubiquitous problems. For kk-means dimensionality reduction, we provide (1+ϵ)(1+\epsilon) relative error results for many common sketching techniques, including random row projection, column selection, and approximate SVD. For approximate principal component analysis, we give a simple alternative to known algorithms that has applications in the streaming setting. Additionally, we extend recent work on column-based matrix reconstruction, giving column subsets that not only `cover' a good subspace for \bv{A}, but can be used directly to compute this subspace. Finally, for kk-means clustering, we show how to achieve a (9+ϵ)(9+\epsilon) approximation by Johnson-Lindenstrauss projecting data points to just O(logk/ϵ2)O(\log k/\epsilon^2) dimensions. This gives the first result that leverages the specific structure of kk-means to achieve dimension independent of input size and sublinear in kk

    Astrometry.net: Blind astrometric calibration of arbitrary astronomical images

    Full text link
    We have built a reliable and robust system that takes as input an astronomical image, and returns as output the pointing, scale, and orientation of that image (the astrometric calibration or WCS information). The system requires no first guess, and works with the information in the image pixels alone; that is, the problem is a generalization of the "lost in space" problem in which nothing--not even the image scale--is known. After robust source detection is performed in the input image, asterisms (sets of four or five stars) are geometrically hashed and compared to pre-indexed hashes to generate hypotheses about the astrometric calibration. A hypothesis is only accepted as true if it passes a Bayesian decision theory test against a background hypothesis. With indices built from the USNO-B Catalog and designed for uniformity of coverage and redundancy, the success rate is 99.9% for contemporary near-ultraviolet and visual imaging survey data, with no false positives. The failure rate is consistent with the incompleteness of the USNO-B Catalog; augmentation with indices built from the 2MASS Catalog brings the completeness to 100% with no false positives. We are using this system to generate consistent and standards-compliant meta-data for digital and digitized imaging from plate repositories, automated observatories, individual scientific investigators, and hobbyists. This is the first step in a program of making it possible to trust calibration meta-data for astronomical data of arbitrary provenance.Comment: submitted to A
    corecore