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Error estimates for density-functional theory predictions of surface energy and work function
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Density-functional theory (DFT) predictions of materials properties are becoming ever more widespread. With
increased use comes the demand for estimates of the accuracy of DFT results. In view of the importance of
reliable surface properties, this work calculates surface energies and work functions for a large and diverse test
set of crystalline solids. They are compared to experimental values by performing a linear regression, which
results in a measure of the predictable and material-specific error of the theoretical result. Two of the most
prevalent functionals, the local density approximation (LDA) and the Perdew-Burke-Ernzerhof parametrization
of the generalized gradient approximation (PBE-GGA), are evaluated and compared. Both LDA and GGA-PBE
are found to yield accurate work functions with error bars below 0.3 eV, rivaling the experimental precision.
LDA also provides satisfactory estimates for the surface energy with error bars smaller than 10%, but GGA-PBE
significantly underestimates the surface energy for materials with a large correlation energy.

DOI: 10.1103/PhysRevB.94.235418

I. INTRODUCTION

Due to ever increasing hardware performance and algorithm
efficiency, the capabilities of quantum-based computational
materials physics continue to grow rapidly. Methods that
solve the Schrödinger equation to improve the understanding
of materials consequently gain ever more prominence as
their reach in system size expands. Density-functional theory
(DFT) [1,2] has become one of the most prevalent of these
methods. One of the areas in which DFT is being applied, is
the modeling of surfaces and interfaces of crystalline solids [3],
with an increased emphasis on a computational screening
to identify interesting materials without experimental input
[4–6]. The usefulness of DFT simulations therefore depends on
their accuracy, i.e., the deviation with respect to experimental
results. A number of studies have attempted to assess the accu-
racy of DFT-predicted surface properties [7–18]. Most of these
studies, however, only consider a limited set of test surfaces,
which brings into question the transferability and statistical
significance of the accuracy estimate. The present work uses a
test set of elemental materials, spanning most of the periodic
table, for a statistical analysis of the agreement between DFT-
calculated and experimentally measured surface properties. It
makes use of the framework established by Lejaeghere et al.,
who estimated the accuracy of DFT predictions for structural,
elastic, and thermal properties of crystalline solids [19,20]. In
the same spirit, the objective is to characterize the DFT value as
a predictor for the experimental result. This leads to an estimate
of the accuracy of DFT-predicted surface properties, the
identification of experimental outliers and a protocol to correct
calculated quantities a posteriori for predictable deviations.

The surface properties considered in this benchmark study
are the surface energy and work function of crystalline solids.
The surface energy is the energy required to create a surface
from the bulk crystal. It is an important thermodynamic quan-
tity governing the equilibrium shape of monocrystals [21–23],
brittle fracture [24], or the rate of sintering [25]. The work
function is the minimum energy required to extract an electron
from the bulk of a material to the surrounding vacuum. It is one
of the principal quantities governing thermionic emission [26]
and band bending at semiconductor contacts [27]. Because

of their fundamental importance, many experimental data are
available for both quantities.

Both the work function and surface energy can be derived
directly from periodic DFT calculations. This is in contrast
to the experimental difficulties encountered when measuring
these properties (see Sec. II A). Theoretical predictions
of work functions and surface energies therefore offer a
convenient and complementary method to cumbersome
experiments. Nevertheless, these predictions are not perfect,
due to approximations that are meant to make the theory
tractable. This work aims to provide a confidence interval for
DFT-based surface properties, in order to correctly interpret
them with respect to their experimental counterparts.

DFT surface calculations were performed for all group 1
through group 15 elemental materials lighter than Po, except
for B, Mn, N, P, and the lanthanides. For N, P, the lanthanides,
and materials in groups 16–18, there is very little to no
experimental surface information available. A comparison
between DFT and experiment is therefore not possible. B
and Mn were not considered either, because they both have
a very complex unit cell from which surface construction
is computationally very cumbersome. For all surfaces both
the LDA (in the Perdew-Zunger parametrization) [28] and
PBE [29] exchange-correlation functionals were evaluated,
as these are two of the most prevalent functionals in the
field of solid-state DFT. Additionally, a comparison between
both functionals provides insight into how DFT-calculated
surface properties depend on the level of theory. In Sec. II
the experimental data, details of the calculations and statistical
concepts necessary for comparing theory and experiment, are
presented. Section III discusses the result of this comparison by
evaluating the predictable errors, analyzing the residual errors,
and validating the derived correction protocol from theory to
experiment.

II. METHODOLOGY

A. Experimental data

The definition of the surface energy is thermodynamically
straightforward, but measuring the surface energy of a solid
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is extremely difficult and prone to a large imprecision.
The experimental challenge is underlined by the myriad of
different methods that have been proposed to determine the
surface energy. These vary from cleavage experiments [24]
for brittle materials, the zero-creep method for more ductile
materials [30,31], the analysis of the equilibrium shape of
crystallites [22,23], or contact angle measurements of liquid
droplets [32]; to less direct solutions such as measuring
the elastic modulus [33], the electrical conductivity [34],
or even the speed of acoustic waves [35] in submicrometer
powder assemblies. These experiments often suffer from a
low precision and inaccuracies due to surface contaminants,
but more importantly from a benchmark point of view,
each method is biased towards a certain class of materials.
This inconsistency severely hampers a uniform quantitative
comparison across the entire test set of materials evaluated in
this work.

Because of the above-described difficulties involved in
obtaining the surface free energy of a solid, Tyson and
Miller [36] derived a semiempirical approach that uses the
liquid surface tension, which can be measured much more
accurately. Because the derivation applies to all elemental
materials, a consistent database is obtained. Moreover, the
transparency of the method by Tyson and Miller makes it
possible to estimate a consistent experimental error bar for
the surface energies they present, which is necessary for
the comparison with DFT predictions. To motivate how the
experimental error bars are determined, a short overview of
the considerations of Tyson and Miller is necessary.

Tyson and Miller first derived the equality

γSV = γSL + γLV, (1)

which is valid at melting temperature. γSV is the solid-
vapor interface energy, which is a synonym for the surface
free energy being sought for, γSL is the solid-liquid interface
energy, and γLV the liquid-vapor interface energy (i.e., the
surface tension). Although it ignores anisotropic effects of γSL

or γSV, Eq. (1) adequately represents the average energetic
tradeoffs involved in surface formation.

To obtain the relation between the known liquid surface
tension γLV and the desired solid surface energy γSV, Tyson
and Miller then introduced two new ratios, the product of
which is the ratio of γSL and γSV:

γSL

γgb

γgb

γSV
= γSL

γSV
= α, (2)

where γgb is the grain boundary energy for an average
high-angle grain boundary. The ratio γSL/γgb was determined
to be 0.45 ± 0.05 by extrapolation of dihedral angle data of
liquid precipitates at grain boundaries in binary alloys [37].
The second ratio γgb/γLV was derived from measurements
of dihedral angles at thermally etched grain boundaries and
estimated to be 0.33 ± 0.04 (see Tyson and Miller). Combining
Eqs. (1) and (2), one obtains

γSV

γLV
= 1

1 − α
. (3)

This results in γSV/γLV = 1.18 ± 0.03 as an estimate for
a general material. In principle, however, the ratio should
be determined for every individual material. This suggests

Svib,max

Sconf,max

FIG. 1. The surface entropy S as a function of temperature in the
simplified model of Tyson and Miller [36]. The first linear increase is
due to the activation of surface-related vibrational contributions. The
second linear increase is associated with surface roughening.

the error margin of ±0.03 given by Tyson and Miller is
somewhat optimistic. Other authors [36] proposed alternative
values for the ratio γSV/γLV in the range 1.09–1.33, which
means a somewhat larger uncertainty of about ±10% should
be taken into account for the derived values of γSV at melting
temperature.

The conversion from the liquid-vapor to the solid-vapor
interface energy is only applicable at the melting temperature
Tm. To compare with DFT data, γSV must be transformed
to a surface energy at 0 K. Two entropic contributions were
singled out by Tyson and Miller as the most important
factors for the temperature dependence of γSV: the vibrational
entropy Svib, and the configurational entropy Sconf. The former
includes all vibrational modes associated with the surface,
whereas the latter aims to describe the surface roughening
observed when the material is heated. For both contributions a
simplified approximation was proposed [38]. Svib was assumed
to increase linearly from 0 to 0.8 R (where R is the universal gas
constant) between 0 K and the Debye temperature TD ≈ 0.2Tm.
Surface roughening, on the other hand, becomes significant
from T = 0.5Tm to T = Tm and causes a linear increase in
Sconf from 0 to R in that temperature interval. The entire
temperature-dependent evolution of the surface entropy is
depicted in Fig. 1. If the effective [39] surface area A for
a surface of general orientation is approximated as A ≈
1.612N1/3V

2/3
m [38], with N as Avogadro’s number and Vm the

molar volume, the temperature-dependent transformation is

γSV(0) = γSV(Tm) −
∫ 0

Tm

S(T )

A
dT

≈ γSV(Tm) + RTm

A
.

(4)

The transformation of γSV from Tm to 0 K utilizes a rough
approximation for the surface entropy. Other estimates of
Svib and Sconf suggest a large uncertainty of ±50% should
be attached to the RTm/A value [38]. However, as this
term only contributes about 10% of the total surface energy
(RTm/A ≈ 0.1γSV) [36], the dominant part of the uncertainty
remains the conversion from γLV to γSV. The total error bar on
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the experimental surface energy of a material i is then

σi,expt =
√

(0.1γSV)2 + (0.5 RTm/A)2 ≈ 0.112γSV. (5)

It must be emphasized that the entire derivation of Tyson
and Miller revolves around averages. A material-independent
conversion from γLV to γSV is applied and the temperature
effect is estimated by employing a simplified model for
the entropy. The only material-specific properties used are
surface tension at the melting temperature γLV(Tm) and molar
volume Vm. This means no crystallographic or anisotropic
information is present. Moreover, many materials undergo
a phase transformation between 0 K and Tm. This begs the
question which phase should be associated with the data
by Tyson and Miller. A decisive argument to identify the
most appropriate surface is the ratio γgb/γSV. As measure-
ments of this ratio are performed at room temperature, the
preferred crystallographic structures are those stable at room
temperature. Moreover, work functions are typically measured
for those room temperature allotropes as well. Using these
when comparing both experimental surface energies and
experimental work functions to the DFT-predicted values (see
Sec. III), serves to maintain consistency in this accuracy
assessment.

Work function measurements are more precise than surface
energy measurements. The main source of inaccuracies lies
in the presence of surface defects. Adsorbed impurities or
structural surface defects can strongly alter the measured work
function. For the elemental materials, the work function data
compiled by Michaelson [40] forms the largest reference set.
However, a rigorous discussion of experimental precision is
lacking. A review encompassing fewer elemental materials
but a larger amount of data was more recently presented
by Kawano [41]. Because more experimental results are
available for each material, it is possible to determine reliable
experimental error bars for the work functions reviewed by
Kawano. The standard deviations on sets of experiments for
the same surface are at most 0.18 and 0.25 eV for anisotropic
and polycrystalline samples, respectively. For materials with
limited experimental data, a safe value of 0.32 eV was applied.
There are a number of materials (As, Ba, Bi, Cd, Hg, Mg,
Sn, Tl, Zn, and Zr) for which a work function was given
by Michaelson, but the data were judged to be of unknown
reliability. The accuracy with which the work functions of
these materials is predicted by DFT is evaluated, but they are
not incorporated in the statistical analysis.

B. DFT calculations for surfaces

A crystalline solid is usually modeled computationally
by applying three-dimensional (3D) periodic boundary con-
ditions. A surface of the material is created by inserting
a vacuum region within a periodic cell. This essentially
mimics a cleavage procedure and creates periodically repeated
slabs of N atomic layers, which have two surfaces of an
imposed crystallographic orientation (Fig. 2). The surface
energy Esurf = γA corresponds to the energy required to create
a slab surface of area A. It is obtained from the DFT calculation
by subtracting the bulk energy per layer (Ebulk) N times from
the total slab energy (Eslab) and dividing by two to account for

FIG. 2. To model a surface on the atomic scale in a 3D periodic
code, slabs of atomic layers are constructed. As an example the {100}
surface of a face-centered cubic material is shown. The slab unit cell
is indicated by the red box.

the presence of two identical surfaces at both sides of the slab:

Esurf = 1
2 (Eslab − N × Ebulk) = γA. (6)

To differentiate the normalized surface energy from Esurf,
it is usually indicated by γ (as was done in Sec. II A) and
expressed in J/m2.

To correctly model a real surface, no interaction ought
to be present between surfaces of neighboring slabs and
the center of the slab should behave as bulk material. The
first condition is fulfilled by making the vacuum region
sufficiently large. The second condition is fulfilled when the
work function and surface energy are converged with respect
to slab thickness. Using Eq. (6) in this convergence test has
a potential computational pitfall, however. Because the bulk
and surface energies stem from different DFT calculations,
possible numerical discrepancies, caused by different �k-point
sampling for example, are enlarged by a factor N , the
thickness of the slab [Eq. (6)]. A number of solutions have
been proposed to avoid this divergence with respect to slab
thickness. Boettger [42] proposed to derive the energy of a bulk
layer by subtracting the energy of a slab with N − 1 layers from
that of a slab with N layers. Fiorentini and Methfessel [43] put
forward the idea of performing a number of slab calculations
and deriving the bulk energy from a linear fit to the energies.
Another possible solution is to create a bulk unit cell which
matches the orientation of the slab. This would allow for a
perfect match in �k-point meshes.

By evaluating all of the above-described approaches to
improve convergence of Eq. (6), it was concluded that none of
them improved on simply performing a very precise bulk and
slab calculation. Recently Singh-Miller et al. [14] came to the
same conclusion when reviewing these different methods. The
alternative methods are mainly useful when fine �k meshing is
unfeasible due to hardware limitations. When it is possible to
apply highly converged sampling in reciprocal space, however,
sticking to a simple bulk calculation is sufficient and avoids
additional difficulties. It is, for example, not clear how thick
the slab should be when using the Boettger method. Neither
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is it easy to determine which thickness range is suitable for
deriving the bulk energy from a linear fit, as per the method
by Fiorentini and Methfessel.

A calculation of an atomic slab model is inherently limited
to a surface of a specific orientation. How does one compare the
corresponding anisotropic surface energy prediction by DFT
with experimental data? Since Tyson and Miller presented
their experimental data as valid for a surface of “general
orientation,” the ideal solution would be to calculate a number
of different orientations sufficiently large to integrate over the
two-dimensional orientation space. For materials with cubic
symmetry, however, the {100}, {110}, and {111} surfaces actu-
ally suffice to perform the integration. By applying the terrace-
ledges-kinks (TLK) description of a general surface [44], a
ledge (or step) energy can be fitted to the transformation from
one orientation to the other, and can subsequently be used to
interpolate the surface energy to a general orientation. This
approach produces good results for cubic materials because
the above-mentioned simple surfaces already cover a total of
26 orientations. For materials with hexagonal, rhombohedral,
or tetragonal symmetries a significantly larger number of DFT
calculations is needed. Fitting the ledge energy is only valid
for interpolating between two simulated orientations with a
limited angular separation. Moreover, additional simulations
involve more vicinal surfaces, requiring larger slab unit cells
and thus a higher computational cost. For the sake of simplicity
and consistency across different crystal structures, the basic
arithmetic mean of three low-index surfaces was used (see
further). Comparing this simple approach with the more
accurate results from the TLK approach for the cubic materials,
a decrease in surface energy of about −5.5% is observed. This
shift is, however, almost completely material independent,
ranging from −5.66% to −5.19%. For a comparison to
experimental data, the near-constant deviation means the
simple arithmetic mean is as valuable as the TLK approach
(see Sec. II C).

Whereas the DFT surface energy is derived from the
comparison of a bulk and a slab calculation [Eq. (6)], the
work function can be directly obtained solely from the slab
calculation. The work function is

� = Vvac − EF, (7)

where EF is the Fermi energy and Vvac corresponds to the
local one-electron potential at a point in the vacuum where
it becomes constant (i.e., where it is no longer affected by
the presence of the surface). To obtain better convergence of
the work function with respect to slab thickness, the method
of macroscopic averages was proposed by Fall et al. [45]. In
this method, the Fermi energy from a bulk calculation is used
instead. However, for the simple nonpolar slabs in this work,
their method does not result in a more reliable work function,
provided the slab used for the calculation is sufficiently
thick.

For many materials there is only a polycrystalline work
function available, which corresponds to a surface containing
different facets of varying crystallographic orientation. In a re-
view of photoelectric experiments for obtaining work function
data, Helander [46] concluded it is the facet with the lowest
anisotropic work function which determines the measurement.
This is confirmed by the review by Kawano, where there

are both polycrystalline and anisotropic data available for 14
materials. The work functions for polycrystalline samples are
on average only 90 meV higher than those of the surface
orientation with the lowest work function.

The slab unit cells were constructed from optimized bulk
geometries with the use of the ACONVASP software package
and are provided in the Supplemental Material [47,48]. For
the elemental materials with cubic crystal structures, the {100},
{110}, and {111} surfaces were taken into account. For the hcp
and rhombohedral structures, the {0001}, {1010}, and {1120}
surfaces were simulated. The {100}, {110}, and {001} surfaces
were selected for the tetragonal materials and the {100}, {010},
and {001} surfaces for orthorhombic Ga. The surface atoms
were allowed to relax to acquire an optimized surface structure
for all materials. The (2 × 1){111} and the (2 × 1){100}
surface reconstructions for the diamond structures were also
included. There are a number of possible reconstructions for
the diamond structures, which were computationally evaluated
by Stekolnikov et al. [49]. As the (2 × 1) reconstructions
were always either the most stable or at most 6% higher in
surface energy, these were the ones included in the present
DFT calculations. For materials with more than one atom in
the primitive unit cell, some surface orientations have more
than one possible termination. In these cases, the energetically
most favored termination—the one with the lowest surface
energy—was applied to both ends of the slab. For Fe, Co,
Ni, and Cr, magnetization of the surface was taken into
account.

The Vienna ab initio simulation package (VASP) soft-
ware [50–53] was used with VASP 5.2 recommended PAW
potentials [54–56] for all LDA and PBE calculations. These
potentials were recently shown to provide a similar precision
as all-electron calculations [57]. Convergence tests were
performed to determine the most appropriate meshing in
reciprocal space, plane-wave cut-off energy, slab thickness,
and number of surface layers allowed to relax. To efficiently
determine the optimal settings, four electronically different
materials were selected for each crystal structure (see Sup-
plemental Material for convergence tests [48]). The most
stringent settings required for this group of four materials were
applied to all other materials with the same crystal structure.
The numerical precision associated with these settings was
60 meV for work functions and 5% for surface energies in
the worst cases, significantly lower than the experimental
error bars discussed in Sec. II A. The plane-wave cut-off
energy was set at 400 eV for all materials except for
Li (800 eV) and C (600 eV). A convergence criterion of
10−8 eV was used for the electronic self-consistent cycle
and of 10−6 eV for the structural optimization. The vacuum
spacing between slabs was always chosen to be approximately
20 Å wide. The exchange and correlation contributions to the
local one-electron potential were not taken into account to
determine Vvac, as these converge to zero sufficiently far from
the surface. During structure relaxations, Methfessel-Paxton
smearing of first order [58] (σ = 0.01 eV) was used. During
all other calculations, the tetrahedron method with Blöchl
corrections was used [59] for all other calculations. All
final slab geometries, settings, DFT results, and experimental
data used for comparison are available in the Supplemental
Material [48].
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C. Statistical analysis

When presenting results of experimental measurements, it
is common practice to provide confidence intervals. Guidelines
for the determination of such intervals are summarized in
the Guide to the Expression of Uncertainty in Measurement
(GUM) [60]. Published computational results, on the other
hand, are rarely accompanied by an error bar. Indeed, deter-
mining such an interval is not straightforward, as Civalleri
et al. [61] illustrated by showing how the comparison of com-
putational methods is affected by the chosen error measure.
A formal framework proposed by Irikura et al. [62] aims
to adhere to international standards as recommended by the
GUM by removing the bias in the error. For a DFT-predicted
materials property this entails selecting a representative test
set and determining the average error. This predictable part
of the DFT error can subsequently be distinguished from a
material specific error and utilized to transform the calculated
result to the expected true value, serving as an a posteriori
calibration. This decomposition of the computational error
has been applied to DFT results [19,20,63] and was recently
reviewed by Pernot et al. [64]. Note that, whereas the present
work discusses computational errors in terms of predictable
and material-specific contributions, literature sometimes refers
to systematic and random errors. Here the terms systematic
and random are avoided, since all computational results are
intrinsically deterministic.

To find the predictable error, the discrepancy between the
DFT results and experimental data must be analyzed for trends.
This boils down to a search for a general transfer function f

which maps the computational results Xi onto the experimental
values Yi . The preferred option is a simple model for f with
only a few parameters which are intuitively easy to understand.
Because of the simple form of f and the complex nature of
the errors, there will always remain some amount of scatter
ε between the transformed DFT results Ŷi = f (Xi) and the
actual experimental results Yi :

Yi = f (Xi) + εi = Ŷi + εi . (8)

The residual errors εi are the material-specific part of the
error. They represent a true measure of the inadequacy of the
method, as they cannot be removed by correcting for an overall
bias. If εi were zero for all materials i, there would be a perfect
mapping between DFT and experiment. This is why an average
of three different anisotropic DFT-predicted surface energies is
equally valuable as an isotropic surface energy derived by the
more accurate TLK approach, as discussed in Sec. II B. The
discrepancy between those two methods is entirely material
independent and thus predictable. Consequently, the residual
errors εi are the same for both methods.

Determining Ŷ = f (X) is most conveniently achieved by
proposing a function with p parameters (β0,β1, . . . ,βp) = �β
and subsequently minimizing the sum of squares of the residual
errors (SSR). For a zero-centered normal distribution of the
residual errors εi , this yields the maximum likelihood estimate
(MLE) for �β [65],

SSR =
n∑

i=1

(Ŷi − Yi)
2 =

n∑
i=1

[f (Xi, �β) − Yi]
2. (9)

FIG. 3. An illustration of the meaning of the SER. It is a variable,
residual error (green dotted line) on top of a predictable deviation
(solid blue line).

The SSR is a metric for the total absolute deviation from
the proposed model f (X, �β). Divided by the statistical degrees
of freedom ndf = n − p, it also forms an unbiased estimator
for the variance σ 2

ε on the εi . Its square root is referred to as
the standard error on the regression (SER) [65] (Fig. 3):

SER = σ̂ε =
√

SSR

n − p
. (10)

When there is an additional uncertainty on the experimental
values Yi , the residual error in Eq. (8) decomposes into εi =
εi,DFT − εi,expt. If all experimental values are equally precise,
Eq. (9) and the fitting procedure can be used unaltered. If, on
the other hand, εi,expt differs for different Xi the MLE metric
to obtain �β slightly changes [65]:

SSR =
n∑

i=1

(
f (Xi, �β) − Yi

σi,expt

)2

=
n∑

i=1

wi[f (Xi, �β) − Yi]
2.

(11)
The added weights wi = 1/σ 2

i,expt warp the SSR metric,
emphasizing more precise experimental data. This in turn
alters the interpretation of the SER. Multiplied by the local
experimental deviation σi,expt, it is now an estimate of the
local residual error εi . Because the experimental imprecision
is likely uncorrelated with shortcomings of the DFT model,
one can write

σ̂ 2
ε,i = σ 2

i,expSER2 = σ 2
i,expt + σ̂ 2

i,DFT. (12)

Note how Eq. (12) implies that the SER can never be
expected to be smaller than one, as deviations caused by
experiment are always present. The SER thus becomes a
measure of the relative contribution of the DFT model to
the total uncertainty. This confirms the importance of the
discussion on experimental errors in Sec. II A. This is not
only true for the quantities discussed in this work. Recently,
Kirklin et al. [66] concluded that the mean absolute error
on experimental formation energies was of comparable size
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(0.082 eV/atom) to the average absolute difference between
DFT and experiment (0.096 eV/atom).

By determining the parameters �β, a protocol can be
created to transform any DFT-predicted value to the expected
experimental one. The SER × σi,expt obtained via �β then serves
as an error bar on this prediction. However, there are a
number of important assumptions involved in the application
of the least-squares method and the subsequent residual
error analysis. First, the value of the derived function f (X)
depends on the soundness of the experimental data and the
representativity of the test set for a general material. The
meticulous determination of material-dependent experimental
error bars (Sec. II A) and the large and varied test set should
address those concerns. Second, all derived quantities in this
section assume a zero-centered normal distribution for the
residual errors (Ŷi − Yi)/σi . By analyzing the residual errors,
this assumption can be evaluated (Sec. III).

III. RESULTS

A. The character of the predictable error

In Sec. II C the transfer function f between theory and
experiment, which contains the predictable error, was dis-
cussed for a general situation. To determine the most suitable
form of f , Bayesian model selection (BMS) was used. The
probabilities of different polynomial degrees were compared,
by evaluating the model probability as described by Mana
et al. [67], and are presented in Fig. 4. For the work function
data, a linear form f (Xi) = Ŷi = β0 + β1Xi is the most likely
model. For the surface energy data, on the other hand, adding

(a) (b)

(c) (d)

FIG. 4. Results of the Bayesian model selection (BMS) analysis.
Left: LDA work functions (a) and surface energies (c). Right: PBE
work functions (b) and surface energies (d). A linear fit is clearly
the most likely model for both LDA and PBE work functions. For
surface energies, the different error character of group 1 and group 2
materials as opposed to the d block and p block materials result in
the quadratic model competing with the linear model.

a quadratic degree of freedom is an equally likely possibility.
The possibility of a quadratic dependence is, however, chiefly
caused by a different error behavior for some materials classes.
The residual errors for the group 1 and group 2 materials
are distinctly different from the other materials. Combined
with their low surface energies (see Fig. 6), this causes the
apparent quadratic dependence. When separate BMS analyses
are performed, one for the 10 group 1 and group 2 materials
and one for the 33 other materials, the linear form turns out
to be the more probable model except for the PBE surface
energies for the group 1 and group 2 materials, shown with
the red columns in Fig. 4(d). In this case, the influence of the
aberrant behavior of Be heavily influences the small group
of only ten materials. Because the error on the DFT surface
energy for a general material is not actually quadratic, but
rather consists of two linear contributions, no quadratic term
was added to f . This approach serves to make the statistical
analysis on the current test transferable to a general material.

B. Outlier analysis

In Sec. II C it was stressed that one of the inherent
assumptions of the present statistical analysis is the zero-
centered normality of the residual errors. Since all data sets
contain fewer than 100 materials there are no meaningful
quantitative tests available to check for normality. The most
effective ways to check for non-normal behavior are then the
simple histogram and the quantile-quantile plot (QQ plot).
The latter is constructed with Blom’s method for normal
scores [68]. Both graphical tools also assist in spotting outliers
in the data set. Excluding such outliers merely on the grounds
of an aberrant residual error is unjustified, however. Indeed,
as the residual error contains material-specific inaccuracies
of the DFT result, outliers may provide information on the
shortcomings of the theoretical prediction.

Be Ti

(a)

Be
Ti

(b)

(c) (d)

FIG. 5. Analysis of the residual errors for LDA work functions:
histograms with fitted normal distributions before (a) and after (c) the
removal of the outliers Be and Ti, accompanied by QQ plots before
(b) and after (d) outlier removal.
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In the histogram and QQ plot of the residuals [69] for
the LDA work function (Fig. 5), two clear outliers can be
observed: Be and Ti [see also Fig. 6(a)]. The same outliers
can also be identified in the PBE work function data set
[Fig. 6(b)]. The large residual error is most likely due to
the surface crystallography of the samples used to measure
the experimental work functions. Section II A stated that for
a given material, the lowest anisotropic DFT work function
corresponds to the polycrystalline result. This requires of
course that the surface orientation with the lowest work
function is present in the polycrystalline sample, a condition
which seems unfulfilled in the case of Be and Ti. This is
especially the case for Be, for which there are alternative work
function data available [70,71] that vary significantly from the
value of Michaelson. Both materials were therefore excluded
from the analysis. Figure 5 demonstrates the importance of
removing both outliers. The reduced data in Fig. 5(d) fit

significantly better to a normal distribution than the full set
in Fig. 5(b). For LDA and PBE the SER drops from 1.46 to
1.23 and 1.49 to 1.29, respectively. This reduction of the SER
is not merely a consequence of outlier removal, it also indicates
a much improved regression result for the remaining data. The
DFT-predicted work functions of Zr and As also show quite
a large discrepancy with respect to the experimental values
(Fig. 6). These were materials for which the work function was
presented as uncertain by Michaelson [40], therefore they carry
no weight in the statistical analysis. As such, it is expected
that the DFT prediction is more accurate than the uncertain
experimental values for those materials.

Among the residual errors for the LDA surface energies,
Cr and Ge are two clear outliers (see Fig. 6(c) and the
Supplemental Material [48]). For both of these materials,
the disagreement between theory and experiment is due to
the breakdown of the approach of Tyson and Miller [36] to

LDA Work Function

(a)

PBE Work Function

(b)

LDA Surface Energy

(c)

PBE Surface Energy

(d)

FIG. 6. Linear fits of experimental values to DFT predictions for all four evaluated data sets. Left: LDA work functions (a) and surface
energies (c). Right: PBE work functions (b) and surface energies (d). For clarity, an inset is provided of the low surface energy range for both
LDA (c) and PBE (d). The data points are color coded per material class [legend in (a)]. The linear fit is indicated by a red dashed line, with
the first bisector in black, corresponding to the ideal theory, serving as reference. Materials of particular interest are indicated with a label.
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obtain reliable experimental surface energies. Cr is the only
material in the present test set which is antiferromagnetic [72];
no magnetic surface effects are included in the derivation by
Tyson and Miller however. In the case of Ge, the significant
surface reconstruction is probably the cause of the very large
residual error. The approach by Tyson and Miller focuses
specifically on metals, without taking surface reconstruction
into account. For Si, of which the surface energy was also
overestimated but not such a significant outlier, it is possible
to consult additional experimental results, derived via other
methods, to shed some light on this problem. Eaglesham
et al. [73] derived surface energies for the low-index surface
orientations of Si from the equilibrium shape of crystallites,
combined with the cleavage energy for the Si{111} plane
measured by Jaccodine [74]. With the latter value measured
at −196 ◦C and the crystallite equilibrium shapes used to
extrapolate the {111} surface energies to the other orientations,
the values presented by Eaglesham et al. are good candidates
for comparison with 0 K DFT values. These experimental
values are in much better agreement with the DFT values than
the semiempirical results obtained by Tyson and Miller [36].
The DFT surface energies are still larger than the experimental
values, but only by about 3%–11% for PBE and 16%–23%
for LDA. Moreover, the anisotropy found by Eaglesham
et al. [73] in the crystallite shape, is reproduced by the DFT
calculations. When alternative experimental data for Si{110}
are also included into the comparison, it is found that no
experimental method renders surface energies as low as the
one presented by Tyson and Miller, although they range from
1.43 to 5.38 J/m2 [75]. From this it can be concluded that
the semiempirical derivation used by Tyson and Miller is
unsuitable for obtaining the surface energy of the Si and Ge
semiconductors. Excluding both Cr and Ge from the test set
again ensures zero-centered normality of the residuals and
improved regression results with lower SERs. To maintain
consistency when comparing the LDA and PBE functionals,
Cr and Ge are also removed from the PBE surface energy data
set, although in this case they are less distinct outliers. This is
not because these materials perform better with PBE than with
LDA, but because PBE is less accurate for surface energies
than LDA (see Sec. III C).

C. Regression analysis

Table I presents the error estimates resulting from the linear
regressions for LDA and PBE work functions and surface
energies. All four linear fits are shown in Fig. 6, with data
points of particular interest accompanied by a label. The
weighted residual errors for the work function and surface
energies are indicated with a color code in Fig. 7, with darker
shades highlighting larger residual errors. Some experimental
work functions were deemed unreliable by Michaelson [40],
so these carry zero weight in the regression analysis.

Both LDA and PBE produce very similar residual errors
for work functions when compared to experiment. Regardless
of the chosen functional, the SER is smaller than

√
2 [see

Eq. (12)], which means that the DFT inaccuracy, after
correcting for predictable errors, is expected to be smaller
than the typical experimental uncertainty. These predictable
errors differ somewhat between LDA and PBE, with a simpler

TABLE I. Error estimates from the linear regression between
experimental and DFT values, for all four data sets. The coefficients
β0 and β1 are accompanied by an expected error, obtained from the
diagonal elements of the covariance matrix (see the Appendix A). A
95% confidence interval is provided for the SERs (see the Appendix A
for derivation).

β0 (eV) β1 SER

�LDA 0.22 ± 0.09 0.94 ± 0.02 1.221.47
1.05

�PBE 0.30 ± 0.09 0.99 ± 0.02 1.291.55
1.11

β0 (J/m2) β1 SER
γLDA 0.00 ± 0.01 0.93 ± 0.02 1.361.74

1.12

γPBE 0.03 ± 0.01 1.12 ± 0.02 2.342.98
1.92

character of the predictable error for PBE, as it solely consists
of a 0.3 eV constant offset.

Although PBE is the higher level of theory, it does not
appear to improve surface energies; LDA is clearly the
more accurate functional in this respect, as evidenced by its
significantly smaller SER. The predictable error derived from
the regression shows an 11% underestimation of the surface
energy by PBE (β1 = 1.12), but an overestimation of 8%
by the LDA functional (β1 = 0.93). Such trends are to be
expected: creating a surface can be crudely approximated by
the breaking of atomic bonds [76] and it is a well-established
observation in solid-state DFT that the LDA functional
overestimates bond strength, whereas PBE underestimates
it [77]. Consequently, the predictable errors on the DFT surface
energy are transferable from predictable errors on the DFT
cohesive energy [19], a bulk property. Such a connection is
also present for the residual error. The Pearson correlation
coefficient between the residual errors for the surface energy
and the relative residual errors [78] for the equilibrium volume
is −0.81. This suggests that the error on DFT surface energy
predictions very often coincides with an error in predicting the
correct equilibrium volume. Such a relation is not observed
for work function errors.

The magnetic materials, Fe and especially Cr, are among
the worst performing materials, their surface energies being
severely overestimated by DFT. This ties in to the discussion
of the validity of the approach by Tyson and Miller [36] when
magnetic materials are concerned (Sec. III B). The surface
energies for Fe, Co, and Ni are slightly improved by using
PBE, but it is hard to discern whether this is due to improved
DFT modeling or the manner in which the experimental
data are derived. The surface energies of Ge and Si are
also overestimated by both functionals, even though the DFT
values presented in this work are somewhat lower than those
presented by previous authors [49,79].

The SER for LDA surface energies is markedly lower than
for PBE results, making the former stand out as the functional
of choice for predictions of the surface energy. The worse
general accuracy of PBE surface energies is mainly due to the
poor description of materials in the right part of the d block
and of some of the p metals. These materials are labeled in
Figs. 6(c) and 6(d), and the trend can be clearly seen in Fig. 7.
The loss of accuracy of PBE with respect to LDA for surface
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FIG. 7. Overview of the residual errors of the materials for which a comparison with experiment can be made. Top: LDA (a) and PBE (b)
work functions. Bottom: LDA (c) and PBE (d) surface energies. A darker shade represents a larger absolute value of the weighted residual
error εi . There are four shades in total, corresponding with the intervals 0–1, 1–2, 2–3, and 3–∞ (see legend). Be and Ti were removed from
the work function data set, Cr and Ge were removed from the surface energy data set (see Sec. III B). Materials for which no comparison is
made have a gray symbol. Mn, Be, Se, and Te were not calculated because of their crystallographic complexity. There are experimental work
function data for Zr and As, but the accuracy of these values is unconfirmed [40].

energies has been discussed by both Kurth et al. [80] and
Staroverov et al. [77], who evaluated the surface energy for
a jellium surface. The separate contributions of the exchange
and correlation energy to the surface energy were compared
to highly accurate random-phase approximation (RPA) cal-
culations that included a short-range GGA correction. They
concluded that the reason why LDA provides more accurate
surface energies than PBE is entirely fortuitous. Correlation
contributions, such as dispersion, are inaccurate for both LDA
and PBE, but the overestimation of the exchange contribution
to the surface energy within LDA cancels that inaccuracy to a
large degree. This explains why materials in the right part of the
d block suffer from worse surface energy predictions within
PBE, as the correlation energy offers a large contribution
to the total energy for these materials. This is for example
apparent from the extreme case of Hg [81]. In the case of
the p metals, the overestimation of the exchange energy
also corrects for the absence of dispersion contributions. A
well-known example where this correction is relevant is the
c/a of graphite, which is predicted very accurately by LDA
but is overestimated by PBE [82,83]. When, as a test, all
materials from group 12 onwards (those with a full d shell or
a partially occupied p shell) and noble metals Pt, Ag, and Au
are excluded from the test set, PBE and LDA perform equally
well (Table II). For both functionals the SER is reduced to
0.98 and 1, respectively, suggesting their inaccuracy is very
similar when the materials with a large correlation energy
are excluded. Because these materials are outliers due to
theoretical shortcomings in the DFT functionals, and not due to
inaccuracies in the experimental result, they were not excluded
from the test set.

Due to the deficient description of both exchange and
correlation by semilocal functionals, an improved prediction
of the surface energy can be achieved by describing both of
them at a higher level. One of the possible approaches is
quantum Monte Carlo (QMC), which was used by Alfè and
Gillan [84] to calculate the surface energy of the MgO {100}
surface. By comparing the QMC result to the DFT-LDA and
DFT-PBE results, respectively, they concluded that LDA yields
a better result. An alternative approach is to use exact exchange
(EXX) combined with the many-electron perturbation theory
extension known as the random phase approximation (RPA)
to go beyond DFT [85,86]. Both Lazar and Otyepka [17] and
Schimka et al. [87] recently obtained very accurate surface
energies by using the EXX+RPA approach. By comparing
their highly accurate calculated values with surface energies
from cleavage experiments, they suggested the problem of
unreliable surface energies as obtained by (semi)local DFT
has been solved [77,80].

TABLE II. A comparison between the linear fits of LDA and
PBE surface energies to experimental ones when Pt, Ag, Au, and all
group 12 through group 15 materials are removed from the data set.
Removing these materials with large correlation contributions results
in LDA and PBE having a very similar accuracy.

β0 (J/m2) β1 SER

γLDA 0.00 ± 0.01 0.90 ± 0.02 1.001.37
0.79

γPBE 0.02 ± 0.01 1.06 ± 0.03 0.981.35
0.77

235418-9



DE WAELE, LEJAEGHERE, SLUYDTS, AND COTTENIER PHYSICAL REVIEW B 94, 235418 (2016)

However, EXX+RPA calculations are computationally
very expensive. The current analysis highlights the problem-
atic materials classes for which such an investment would be
cost effective.

D. Validation of the model

In the previous section, predictable errors were derived that,
when corrected for, enable a better agreement with experiment.
These predictable errors remain to be validated. This means
that the ansatz that the test set is representative for a general
material should be evaluated. In a first step, this can be done
internally (within the test set). By leaving one material out
of the test set and repeating the linear regression between
theory and experiment, the sensitivity of the regression to a
single data point can be assessed. None of the four data sets
contain a data point of which the removal significantly impacts
the parameters �β. Not even the PBE surface energy of Hg, the
removal of which results in a lowering of the SER to 2.00, alters
the regression coefficients more than the expected deviation
(Table I).

To externally validate the derived regression results, binary
materials can be considered. As an example, DFT-predicted
work functions of ZrC{100} [88] and Cu3Pt{111} [89] are
transformed using the regression results from Table I, provided
with an error bar and compared to experimental results. The
same comparison is made for the surface energy of MgO
{100}, although the experimental data in this case originate
from cleavage experiments [24,90,91]. The transformed DFT
results and the corresponding experimental data are presented
in Table III.

The error bars in the first and second column are calculated
by propagating the expected error on β0 and β1 (which are
small), combined with σi,DFT, which is derived from the SER
and Eq. (12). To apply Eq. (12), σi,expt must be known. This is
of course not practically possible when DFT is used to predict
a work function or surface energy. The standard experimental
errors that were discussed in Sec. II A can be used for this

TABLE III. Comparison of the transformed DFT-predicted sur-
face energy of MgO {100} and work functions of ZrC{100} and
Cu3Pt{111} surfaces to experimental data. Error bars are derived
by propagating the error on the coefficients �β and deriving σi,DFT

from the SER. The direct results from DFT calculations are
given in parentheses. The experimental error bars on the surface
energies are those presented by the original authors. For the work
functions, however, no such experimental error bar was given. The
general experimental error of ±0.32 eV, derived from the data by
Kawano [41], is given here.

γLDA (J/m2) γPBE (J/m2) γexpt (J/m2)

MgO 1.16 ± 0.12 1.03 ± 0.24 1.15 ± 0.08 [90]
(1.25) (0.896) 1.20 ± 0.12 [24]

1.33 ± 0.06 [91]
�LDA (eV) �PBE (eV) �expt (eV)

ZrC{100} 4.31 ± 0.25 4.32 ± 0.29 3.85 ± 0.32 [88]
(4.35) (4.06)

Cu3Pt{111} 5.18 ± 0.26 5.22 ± 0.29 5.40 ± 0.32 [89]
(4.93) (5.32)

purpose: σexpt = 0.32 eV for work functions and σexpt = 0.11γ

for surface energies, with γ the transformed DFT result.
For MgO and Cu3Pt the transformed theoretical results are

in excellent agreement with experiment, although the error bar
for γPBE is rather large due to the larger SER. The transformed
work function of Cu3Pt is closer to the experimental value
for both LDA and PBE than the bare calculated value. In the
case of the surface energy of MgO, it is unclear whether the
transformation is an improvement because of the large spread
in experimental data. In contrast, the predicted work function
of ZrC does not agree all that well with experiment. There is
only one experimental value available for the {100} surface,
but quite a few more are amassed for polycrystalline ZrC in
the Kawano review [41]. They are spread out between 3.2
and 4.48 eV, which indicates that precise ZrC work functions
are hard to obtain. In this light, as in the case of As and Zr,
the theoretically predicted 4.32 eV might serve as a superior
assessment of the ZrC{100} work function.

IV. CONCLUSION AND OUTLOOK

By comparing 43 experimental surface energies and 73
work functions to their DFT-predicted counterparts, the accu-
racy of the PBE and LDA functionals was quantified for surface
properties. The deviation between the theoretical predictions
and experiment was separated into a predictable and a residual
contribution. The predictable error was determined with a
weighted linear regression, fitting to a linear trend, and is
valid for a general material. The residual error, on the other
hand, stems from material-specific deviations from the general
trend. It was quantified by the standard error on the regression
(SER), which is derived from the residual errors for the
entire test set. The SER is regarded as a good measure of
theoretical inaccuracy and was used to assess the quality of
DFT predictions with different functionals. The comparison of
the DFT-predicted surface energies and work functions with
experimental data is summarized in Fig. 6. The residual errors
for both functionals are indicated with a color code in Fig. 7.

Both the LDA and PBE functional yield a SER smaller than√
2 when the DFT-predicted work functions are compared to

experiment. This means that, after correcting for predictable
errors, both levels of theory are likely to yield work function
results of comparable—even slightly better—quality than ex-
perimental results, as the error due to theoretical inaccuracy is
expected to be smaller than the one resulting from experimental
imprecision. The predictable part of the error has a very simple
form for the PBE functional, as it only consists of a 30 meV
constant offset. Both LDA and PBE, however, are excellent
tools to predict the work function of a crystalline solid.

For surface energy predictions, there is a large discrepancy
between the SER of the LDA and PBE functionals. This is
mainly caused by poor performance of the PBE functional.
Although it is a higher level of theory, it severely underesti-
mates the surface energy of materials for which correlation
contributions are important. In contrast, the LDA functional
provides more accurate predictions for such materials. This
agreement is, however, entirely fortuitous, as was discussed
by Kurth et al. [80] and Staroverov et al. [77]. As such, LDA
emerges as a more accurate method for calculating surface
energies.
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It would be very insightful to extend this research to
other functionals, especially for surface energies. Other
parametrizations of the GGA, such as the revised PBE
(revPBE) [92] or PBEsol functional [93], are tuned for a
better prediction of surface properties and could provide
more accurate surface energies. More recent GGA functionals,
such as the TM functional by Tao and Mo [94], might
also provide improved surface energies. However, significant
improvements, especially for correlation-governed materials,
probably require a higher level of theory. The use of the
random-phase approximation (RPA) could solve the severe
underestimation of the surface energy for those materials, as
was recently suggested in reports by Schimka et al. [87] and
Lazar and Otyepka [17].

This research was limited to the VASP software package and
the use of its recommended PAW potentials. A comparison
with different simulation packages, as was performed by
Lejaeghere et al. [19,57] for bulk properties, could uncover
computational shortcomings not associated with the exchange-
correlation functional. In addition, the inclusion of spin-
orbit coupling, or even of fully relativistic effects, could
provide valuable insights into DFT-related shortcomings for
the heavier materials.

During this research, over 300 anisotropic work func-
tions and surface energies were calculated. Most predictions,
however, cannot be directly compared to experimental data.
Moreover, for some materials the experimental values are
scarce or unreliable, e.g., the work functions of As, Zr, and ZrC.
In such cases, DFT results may provide a reliable estimate,
after correcting for predictable errors. In addition, the devel-
opment of more advanced experimental methods, especially
for measuring surface energy, could provide a wealth of
information to analyze the DFT shortcomings more precisely.
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APPENDIX: WEIGHTED GENERAL
LINEAR REGRESSION

This Appendix serves to provide all the statistical formulas
used in this work. The estimators for the parameters �β are

found by minimizing Eq. (11). The result can be elegantly
contracted in matrix form:

�β = (XT · W · X)−1 · (XT · W · �Y ).

For a fit to a polynomial of degree p, the (i,m) element of
X is Xm−1

i (Xi being the ith individual data point) and W is
a square diagonal matrix with dimensions (p + 1) × (p + 1)
and W(i,i) = wi . �Y is the column matrix with experimental
values Yi .

As �̂Y = X · �β, the residuals �ε = �Y − �̂Y can be expressed in
terms of X, W, and �Y as �ε = (1n − P) · �Y with the hat matrix
P,

P = X · (XT · W · X)−1 · XT · W.

From the residuals, the SSR can be obtained as SSR = �εT�ε.
The covariance matrix V from which the expected errors on

the parameters can be derived for the general linear regression
case is

V = (XT · W · X)−1.

A confidence interval for the SSE can be determined
from SSE/σ 2, which is χ2 distributed with n − p degrees
of freedom. From this, an interval for the SER can be derived.

Algebraically, a weighted linear regression is equivalent to
a normal linear regression after the transformation

X′ = W1/2 · X,

�Y′ = W1/2 · �Y .

This allows the use of the BMS algorithm as described by
Mana et al. [67], where the conditional likelihood of a certain
model M, defined by the matrix X, given the data �Y can be
calculated with

Prob(M| �Y )

∝ 	
(

n−l
2

)
	

(
l
2

)
| �̂Y ′|l|ε′|(n−l)

−
	

(
n−l

2

)
	( n

2 )2F1
(

l
2 , n−l

2 ; n+2−l
2 ; |ε′|2

| �̂Y′|2
)

| �̂Y ′|n
,

where 	 is the gamma function, 2F1 is the regularized
hypergeometric function, l is the number of parameters that

are fitted in the regression (l = p + 1), and �̂Y ′ and ε′ are
the predictions and the residuals resulting from the normal
linear regression using X′ and �Y ′. If the model search space
is restricted, the above equation can be used to assign a
probability to each model.
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