667 research outputs found

    Usefulness of Bone Metabolic Markers in the Diagnosis of Bone Metastasis from Lung Cancer

    Get PDF
    Bone metastasis is common in lung cancer patient and the diagnosis of bone metastasis is usually made by using imaging techniques, especially bone scintigraphy. However, the diagnostic yield from bone scintigraphy is limited. The aim of this study is to assess the clinical usefulness of urinary pyridinoline cross-linked N-telopeptides of Type I collagen (NTx), urinary deoxypyridinoline (DPD), and serum alkaline phosphatase (ALP) in the assessment of bone metastasis in patients with lung cancer. Urinary NTx, DPD, and serum ALP were measured in 151 lung cancer patients (33 with and 118 without bone metastasis). Lung cancer patients with bone metastasis had a higher urinary excretion of NTx and DPD, and a higher serum ALP than those without bone metastasis. NTx had a better receiver operating characteristic (ROC) curve than DPD and ALP, since the areas under the ROC curve were 0.82, 0.79, and 0.71, respectively. Although correlation coefficients among NTx, DPD and ALP were significantly positive (p < 0.005), the strongest relationship was appeared between NTx and DPD (R=0.616). In conclusion, our results showed the utility of the new bone markers in detecting bone metastasis and suggested that measurement of urinary NTx was valid diagnostic method of bone metastasis from lung cancer

    Influence of cultivation parameters or supplement on product qualities and culture performances during perfusion

    Get PDF
    Perfusion processes have been developed with technological advances in single-use bioreactor and cell retention device. Perfusion has advantages such as high cell density culture in compact facilities and media change or culture parameter shifts for protein production with desired qualities. Single use bioreactor (200L or 1000L) with ATF System was used for the clinical production. For the process development, the scale-down model was established with lab-scale (2L) bioreactor with ATF2. A recombinant CHO cell line producing a fusion protein was cultivated using in-house serum-free media. Influence of insulin (0~3mg/L) on qualities was investigated in the established perfusion process using in-house serum-free medium and 2L scale-down model. The results showed that low concentration of insulin enhanced O-glycosylation and -2 charged N-glycan of fusion protein. Temperature (30~34oC) conditions, under no addition of insulin, were investigated to evaluate effect on qualities. High temperature enhanced O-glycosylation and -2 charged N-glycan of fusion protein. To evaluate interaction among culture parameters (Temperature, pH, and Dissolved Oxygen) in the perfusion process, Central Composite Inscribed (CCI) was selected as design of experiment. 20 perfusion cultures were carried out in the 2L scale-down model. The results showed each parameter and interactions among parameters had an effect on qualities and culture performances

    Nitric oxide-dependent cytoskeletal changes and inhibition of endothelial cell migration contribute to the suppression of angiogenesis by RAD50 gene transfer

    Get PDF
    AbstractPrevious reports showed that human RAD50 (hRAD50) gene delivery induced regression of an experimental rat tumor and porcine neointimal hyperplasia. In this study, we examined the effects of hRAD50 on the morphological changes and migration of endothelial cells (EC) as possible mechanisms by which hRAD50 might block angiogenesis. Quantitative image analysis revealed significant inhibition of the number and total area of blood vessels in rat tumor tissues following hRAD50 gene delivery. hRAD50 distorted actin and tubulin arrangements, and significantly reduced the F/G-actin ratio and increased the nitric oxide (NO) production in the primary cultured human EC. These effects were blocked by pretreatment with L-NAME (NG-nitro-L-arginine-methyl ester), a NO synthase inhibitor. FACScan analysis showed that NO was involved in the necrosis and apoptosis of EC by hRAD50. hRAD50 also inhibited EC migration in an in vitro wound-healing model. These results indicate that NO-dependent cytoskeletal changes and inhibition of EC migration contribute to the suppression of angiogenesis by hRAD50 delivery in vivo

    A Pilot Study of the Effectiveness of Medical Emergency System Implementation at a Single Center in Korea

    Get PDF
    Background An automatic alarm system was developed was developed for unexpected vital sign instability in admitted patients to reduce staffing needs and costs related to rapid response teams. This was a pilot study of the automatic alarm system, the medical emergency system (MES), and the aim of this study was to determine the effectiveness of the MES before expanding this system to all departments. Methods This retrospective, observational study compared the performance of patients admitted to the pulmonary department at a single center using patient data from three 3-month periods (before implementation of the MES, December 2013-February 2014; after implementation of the MES, December 2014-February 2015 and December 2015-February 2016). Results A total of 571 patients were admitted to the pulmonary department during the three observation periods. During this pilot study, the MES automatically issued 568 alarms for 415 admitted patients. There was no significant difference in the rate of cardiopulmonary resuscitation (CPR) before and after application of the MES. The mortality rate also did not change. However, it appeared that CPR was prevented in four patients admitted from the general ward to the intensive care unit (ICU) during MES implementation. The median length of hospital stay and median length of ICU stay were not significantly different before and after MES implementation. Conclusions Although we did not find a significant improvement in outcomes upon MES implementation, the CPR rate and mortality rate did not increase despite increased comorbidities. This was a small pilot study and, based on these results, we believe that the MES may have significant effects in longer-term and larger-scale studies

    Effects of Different Cutting Height on Nutritional Quality of Whole Crop Barley Silage and Feed Value on Hanwoo Heifers

    Get PDF
    The present study evaluated the effects of different cutting height on nutritive value, fermentation quality, in vitro and in vivo digestibility of whole crop barley silage. Whole crop barley forage (Yuyeon hybrid) was harvested at height of 5, 10, and 15 cm from the ground level. Each cutting height was rolled to make round bale and ensiled for 100 days. After 100 days of ensiling, pH of silage was lower (p<0.05) in 5 cm, but no difference between 10 and 15 cm of cutting height. The content of lactate and lactate to acetate ratio were increased (p<0.05) in 5 cm of cutting height, whereas the acetate content was higher (p<0.05) in 10 and 15 cm than that of 5 cm cutting height. Aerobic stability was greater (p<0.05) in silages of 10 and 15 cm of cutting height. Three total mixed rations (TMR) were formulated with silages from the three different cutting heights (TMR5, TMR10, and TMR15) incorporated as forage at 70:30 ratio with concentrate (dry matter [DM] basis). In vitro dry matter digestibility was higher (p<0.05) in the TMR5 and TMR10 than that in TMR15, whereas in vitro neutral detergent fiber digestibility was higher (p<0.05) in the TMR10 and TMR15 than that in TMR5. Concentration of NH3-N was highest (p<0.05) in the TMR10 followed by TMR15 and TMR5. Total volatile fatty acid was decreased (p<0.05) with increased cutting height. The digestibility of DM and neutral detergent fiber were highest (p<0.05) in TMR15, than those in TMR5 and TMR10, whereas acid detergent fiber digestibility was higher (p<0.05) in TMR5 than that in TMR10. The results showed that increasing cutting height, at least up to 10 to 15 cm, of whole crop barley forage at harvest (Yuyeon) may be beneficial for making silage for TMR formulation and increasing digestibility of DM and NDF

    Performance of the tuberculin skin test and interferon-γ release assay for detection of tuberculosis infection in immunocompromised patients in a BCG-vaccinated population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interferon-γ release assay (IGRA) may improve diagnostic accuracy for latent tuberculosis infection (LTBI). This study compared the performance of the tuberculin skin test (TST) with that of IGRA for the diagnosis of LTBI in immunocompromised patients in an intermediate TB burden country where BCG vaccination is mandatory.</p> <p>Methods</p> <p>We conducted a retrospective observational study of patients given the TST and an IGRA, the QuantiFERON-TB Gold In-Tube (QFT-IT), at Severance Hospital, a tertiary hospital in South Korea, from December 2006 to May 2009.</p> <p>Results</p> <p>Of 211 patients who underwent TST and QFT-IT testing, 117 (55%) were classified as immunocompromised. Significantly fewer immunocompromised than immunocompetent patients had positive TST results (10.3% vs. 27.7%, p 0.001), whereas the percentage of positive QFT-IT results was comparable for both groups (21.4% vs. 25.5%). However, indeterminate QFT-IT results were more frequent in immunocompromised than immunocompetent patients (21.4% vs. 9.6%, p 0.021). Agreement between the TST and QFT-IT was fair for the immunocompromised group (κ = 0.38), but moderate agreement was observed for the immunocompetent group (κ = 0.57). Indeterminate QFT-IT results were associated with anaemia, lymphocytopenia, hypoproteinemia, and hypoalbuminemia.</p> <p>Conclusion</p> <p>In immunocompromised patients, the QFT-IT may be more sensitive than the TST for detection of LTBI, but it resulted in a considerable proportion of indeterminate results. Therefore, both tests may maximise the efficacy of screening for LTBI in immunocompromised patients.</p

    Comparative proteomic analysis of malformed umbilical cords from somatic cell nuclear transfer-derived piglets: implications for early postnatal death

    Get PDF
    Background: Somatic cell nuclear transfer (scNT)-derived piglets have high rates of mortality, including stillbirth and postnatal death. Here, we examined severe malformed umbilical cords (MUC), as well as other organs, from nine scNT-derived term piglets. Results: Microscopic analysis revealed complete occlusive thrombi and the absence of columnar epithelial layers in MUC (scNT-MUC) derived from scNT piglets. scNT-MUC had significantly lower expression levels of platelet endothelial cell adhesion molecule-1 (PECAM-1) and angiogenesis-related genes than umbilical cords of normal scNT piglets (scNT-N) that survived into adulthood. Endothelial cells derived from scNT-MUC migrated and formed tubules more slowly than endothelial cells from control umbilical cords or scNT-N. Proteomic analysis of scNT-MUC revealed significant down-regulation of proteins involved in the prevention of oxidative stress and the regulation of glycolysis and cell motility, while molecules involved in apoptosis were significantly up-regulated. Histomorphometric analysis revealed severe calcification in the kidneys and placenta, peliosis in the liver sinusoidal space, abnormal stromal cell proliferation in the lungs, and tubular degeneration in the kidneys in scNT piglets with MUC. Increased levels of apoptosis were also detected in organs derived from all scNT piglets with MUC. Conclusion: These results suggest that MUC contribute to fetal malformations, preterm birth and low birth weight due to underlying molecular defects that result in hypoplastic umbilical arteries and/or placental insufficiency. The results of the current study demonstrate the effects of MUC on fetal growth and organ development in scNT-derived pigs, and provide important insight into the molecular mechanisms underlying angiogenesis during umbilical cord development

    Characterization of the antimicrobial substances produced by Nibribacter radioresistens

    Get PDF
    This study characterized the antimicrobial substances produced by the radiation-resistant bacterium Nibribacter radioresistens. The antimicrobial substances showed activity against Salmonella Gallinarum, pathogenic Escherichia coli, Bacillus cereus, Streptococcus iniae, and Saccharomyces cerevisiae. The substances showed higher activity against Gram-positive bacteria than against Gram-negative bacteria and yeast. N. radioresistens showed the best growth rate in LB liquid medium at 37ºC; however, production of the antimicrobial substances was not associated with growth. Since the activity of the antimicrobial substances was affected by proteinase K and EDTA, the substances were presumed to be antimicrobial peptides (AMPs). The antimicrobial substances produced by N. radioresistens were unstable at higher temperatures and in acidic and basic pH ranges, and most of the activity was attributed to either low (30 kDa) molecules. When S. Gallinarum was treated with the antimicrobial substances, the cell destruction was acted on the cell envelope. Therefore, we concluded that N. radioresistens produces broad-spectrum and very unstable antimicrobial substances that mostly consist of low- and high-molecular weight peptides
    corecore