1,623 research outputs found

    A comparison of measured and calculated upwelling radiance over water as a function of sensor altitude

    Get PDF
    A comparison is made between remote sensing data measured over water at altitudes ranging from 30 m to 15.2 km and data calculated for corresponding altitudes using surface measurements and an atmospheric radiative transfer model. Data were acquired on June 22, 1978 in Lake Erie, a cloudless, calm, near haze free day. Suspended solids and chlorophyll concentrations were 0.59 + or - 0.02 mg/1 and 2.42 + or - 0.03 micrograms/1 respectively throughout the duration of the experiment. Remote sensor data were acquired by two multispectral scanners each having 10 bands between 410 nm and 1040 nm. Calculated and measured nadir radiances for altitudes of 152 m and 12.5 km agree to within 16% and 14% respectively. The variation in measured radiance with look angle was poorly simulated by the model. It was concluded that an accurate assessment of the source of error will require the inclusion in the analysis of the contributions made by the sea state and specular sky reflectance

    Atmospheric temperature measurements, using Raman lidar

    Get PDF
    The Raman-shifted return of a lidar system had been used to make atmospheric temperature measurements. The measurements were made along a horizontal path at temperatures ranging from -30 to 30 C and at ranges of about 100 meters. The temperature data were acquired by recording the intensity ratio of two portions of the rotational Raman spectrum, which were simultaneously sampled from a preset range. These tests verified that the theoretical predictions formulated in the design of the system were adequate. Measurements were made to an accuracy of + or - 4 C with 1-minute temporal resolution

    Double heterostructure lasers with facets formed by a hybrid wet and reactive-ion-etching technique

    Get PDF
    Double heterostructure lasers were fabricated in which one of the laser facets was produced by a hybrid wet and reactive-ion-etching technique. This technique is suitable for GaAs/GaAlAs heterostructure lasers and utilizes the selectivity of the plasma in preferentially etching GaAs over GaAlAs. Lasers fabricated by this technique are compatible with optoelectronic integration and have threshold currents and quantum efficiency comparable to lasers with both mirrors formed by cleaving. The technique enables the use of relatively higher pressures of noncorrosive gases in the etch plasma resulting in smoother mirror surfaces and further eliminates the nonreproducibility inherent in the etching of GaAlAs layers

    Unstable resonator cavity semiconductor lasers

    Get PDF
    GaAs heterostructure lasers with unstable resonator cavities were demonstrated for the first time with both curved mirrors fabricated by etching. Typical output powers of 0.35 W were observed in a stable, highly coherent lateral mode. The laser operated stably in a single longitudinal mode over a large range of injection currents. The external quantum efficiency was 70% of that of a similar laser with both mirror facets cleaved implying good output coupling of the energy from the entire region

    Modal properties of unstable resonator semiconductor lasers with a lateral waveguide

    Get PDF
    The modal properties of unstable resonator lasers with a lateral waveguide have been analyzed, and an unstable resonator semiconductor laser with a real index lateral waveguide has been demonstrated. Output powers in excess of 400 mW were observed with a stable, highly coherent lateral field distribution. The incorporation of a lateral real index waveguide with the unstable resonator configuration results in an increase in the external quantum efficiency and the appearance of ripples in the lateral field distribution

    A preliminary report of multispectral scanner data from the Cleveland harbor study

    Get PDF
    Imagery obtained from an airborne multispectral scanner is presented. A synoptic view of the entire study area is shown for a number of time periods and for a number of spectral bands. Using several bands, sediment distributions, thermal plumes, and Rhodamine B dye distributions are shown

    Coordinated aircraft and ship surveys for determining impact of river inputs on great lakes waters. Remote sensing results

    Get PDF
    The remote sensing results of aircraft and ship surveys for determining the impact of river effluents on Great Lakes waters are presented. Aircraft multi-spectral scanner data were acquired throughout the spring and early summer of 1976 at five locations: the West Basin of Lake Erie, Genesee River - Lake Ontario, Menomonee River - Lake Michigan, Grand River - Lake Michigan, and Nemadji River - Lake Superior. Multispectral scanner data and ship surface sample data are correlated resulting in 40 contour plots showing large-scale distributions of parameters such as total suspended solids, turbidity, Secchi depth, nutrients, salts, and dissolved oxygen. The imagery and data analysis are used to determine the transport and dispersion of materials from the river discharges, especially during spring runoff events, and to evaluate the relative effects of river input, resuspension, and shore erosion. Twenty-five LANDSAT satellite images of the study sites are also included in the analysis. Examples of the use of remote sensing data in quantitatively estimating total particulate loading in determining water types, in assessing transport across international boundaries, and in supporting numerical current modeling are included. The importance of coordination of aircraft and ship lake surveys is discussed, including the use of telefacsimile for the transmission of imagery

    Remote sensing study of Maumee River effects of Lake Erie

    Get PDF
    The effects of river inputs on boundary waters were studied in partial support of the task to assess the significance of river inputs into receiving waters, dispersion of pollutants, and water quality. The effects of the spring runoff of the Maumee River on Lake Erie were assessed by a combination of ship survey and remote sensing techniques. The imagery obtained from a multispectral scanner of the west basin of Lake Erie is discussed: this clearly showed the distribution of particulates throughout the covered area. This synoptic view, in addition to its qualitative value, is very useful in selecting sampling stations for shipboard in situ measurements, and for extrapolating these quantitative results throughout the area of interest

    Effect of increasing salinity on the acute toxicity of a commercial endosulfan formulation to the bdelloid rotifer Philodina acuticornis odiosa

    Full text link
    Pesticides, such as endosulfan, can enter surface waters such as lakes and rivers, potentially posing an ecological risk. Rotifers are a dominant zooplankton species in many inland freshwater lakes in Australia; such lakes can also experience increased salinities. Acute toxicity tests (24 h) were conducted to determine the toxicity of a commercial formaulation of endosulfan to the freshwater rotifer Philodina sp. and to investigate the influence of increasing salinity on endosulfan toxicity. Rotifers were found to be relatively tolerant to endosulfan with an EC50 of 1.75 mgL-1 (a.i.), with results also suggesting that there are no interactive effects of salinity on endosulfan toxicity

    Utilization of a new bdelloid rotifer (Philodina acuticornis odiosa) assay to evaluate the effect of salinity on the toxicity of chlorothalonil

    Full text link
    Acute (24 h) toxicity tests were conducted to determine the toxicity of the fungicide chlorothalonil towards the freshwater bdelloid rotifer (Philodina acuticornis odiosa). Since rotifers are the dominant zooplankton species in many inland freshwater lakes in Australia, the influence of salinity on chlorothalonil toxicty was also assessed. The rotifers used in this study appeared to be reasonably tolerant to changes in salinity, with little mortality observed at 3760 &micro;S cm-1, increasing thereafter at higher salinity. The bdelloid rotifers were, however, found to be highly sensitive to chlorothalonil (24 h LC50, 3.2 &micro;g L-1) with results also suggesting that as salinity increases, so does toxicity (e.g., 24 h LC50 at 5000 &micro;S cm-1, 0.5 &micro;g L-1). <br /
    • …
    corecore