57 research outputs found

    The impact of mycorrhizal symbiosis on tomato fruit quality

    Get PDF
    The project investigates the potential impact of mycorrhizal fungi, which have been acknowledged as a new class of bio-fertilizers, on the quality of vegetables. To verify such a hypothesis, we selected tomato (Solanum lycopersicum) as a model plant to examine whether the beneficial effects of mycorrhizal fungi on plant development may be extended to some qualitative fruit features. As a second step, five genes related to carotenoid biosynthesis and volatile compounds were selected. Their expression was investigated through a real-time RT-PCR comparison of mycorrhized and non-mycorrhized plants

    The arbuscular mycorrhizal status has an impact on the transcriptome profile and amino acid composition of tomato fruit

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Arbuscular mycorrhizal (AM) symbiosis is the most widespread association between plant roots and fungi in natural and agricultural ecosystems. This work investigated the influence of mycorrhization on the economically relevant part of the tomato plant, by analyzing its impact on the physiology of the fruit. To this aim, a combination of phenological observations, transcriptomics (Microarrays and qRT-PCR) and biochemical analyses was used to unravel the changes that occur on fruits from Micro-Tom tomato plants colonized by the AM fungus <it>Glomus mosseae</it>.</p> <p>Results</p> <p>Mycorrhization accelerated the flowering and fruit development and increased the fruit yield. Eleven transcripts were differentially regulated in the fruit upon mycorrhization, and the mycorrhiza-responsive genes resulted to be involved in nitrogen and carbohydrate metabolism as well as in regulation and signal transduction. Mycorrhization has increased the amino acid abundance in the fruit from mycorrhizal plants, with glutamine and asparagine being the most responsive amino acids.</p> <p>Conclusions</p> <p>The obtained results offer novel data on the systemic changes that are induced by the establishment of AM symbiosis in the plant, and confirm the work hypothesis that AM fungi may extend their influence from the root to the fruit.</p

    Gigaspora margarita with and without its endobacterium shows adaptive responses to oxidative stress

    Get PDF
    Arbuscular mycorrhizal (AM) fungi experience oxidative stress during the plantâfungal interaction, due to endogenous reactive oxygen species (ROS) produced by fungal metabolism and exogenous ROS produced by plant cells. Here, we examine the responses to H2O2 in Gigaspora margarita, an AM fungus containing the endobacterial symbiont Candidatus Glomeribacter gigasporarum (CaGg). Previous studies revealed that G. margarita with its endobacterium produces more ATP and has higher respiratory activity than a cured line that lacks the endobacterium. This higher bioenergetic potential leads to higher production of ROS and to a higher ROS-detoxifying capacity, suggesting a direct or indirect role of the endobacterium in modulating fungal antioxidant responses. To test the hypothesis that the fungalâendobacterial symbiosis may enhance the fitness of the AM fungus in the presence of oxidative stress, we treated the fungus with a sublethal concentration of H2O2 and performed RNA-seq analysis. Our results demonstrate that (i) irrespective of the endobacterium presence, G. margarita faces oxidative stress by activating multiple metabolic processes (methionine oxidation, sulfur uptake, the pentose phosphate pathway, activation of ROS-scavenger genes); (ii) in the presence of its endobacterium, G. margarita upregulates some metabolic pathways, like chromatin status modifications and iron metabolism; and (iii) contrary to our hypothesis, the cured line responds to H2O2 by activating the transcription of specific ROS scavengers. We confirmed the RNA-seq findings by measuring the glutathione and ascorbate concentration, which was the same in both lines after H2O2 treatment. We conclude that both fungal lines may face oxidative stress, but they activate alternative strategies

    From root to fruit: RNA-Seq analysis shows that arbuscular mycorrhizal symbiosis may affect tomato fruit metabolism

    Get PDF
    BACKGROUND: Tomato (Solanum lycopersicum) establishes a beneficial symbiosis with arbuscular mycorrhizal (AM) fungi. The formation of the mycorrhizal association in the roots leads to plant-wide modulation of gene expression. To understand the systemic effect of the fungal symbiosis on the tomato fruit, we used RNA-Seq to perform global transcriptome profiling on Moneymaker tomato fruits at the turning ripening stage. RESULTS: Fruits were collected at 55 days after flowering, from plants colonized with Funneliformis mosseae and from control plants, which were fertilized to avoid responses related to nutrient deficiency. Transcriptome analysis identified 712 genes that are differentially expressed in fruits from mycorrhizal and control plants. Gene Ontology (GO) enrichment analysis of these genes showed 81 overrepresented functional GO classes. Up-regulated GO classes include photosynthesis, stress response, transport, amino acid synthesis and carbohydrate metabolism functions, suggesting a general impact of fungal symbiosis on primary metabolisms and, particularly, on mineral nutrition. Down-regulated GO classes include cell wall, metabolism and ethylene response pathways. Quantitative RT-PCR validated the RNA-Seq results for 12 genes out of 14 when tested at three fruit ripening stages, mature green, breaker and turning. Quantification of fruit nutraceutical and mineral contents produced values consistent with the expression changes observed by RNA-Seq analysis. CONCLUSIONS: This RNA-Seq profiling produced a novel data set that explores the intersection of mycorrhization and fruit development. We found that the fruits of mycorrhizal plants show two transcriptomic “signatures”: genes characteristic of a climacteric fleshy fruit, and genes characteristic of mycorrhizal status, like phosphate and sulphate transporters. Moreover, mycorrhizal plants under low nutrient conditions produce fruits with a nutrient content similar to those from non-mycorrhizal plants under high nutrient conditions, indicating that AM fungi can help replace exogenous fertilizer for fruit crops. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-221) contains supplementary material, which is available to authorized users
    corecore