8 research outputs found

    Dendritic cell progenitor trafficking and identification and functional analyses of dendritic cells with distinct developmental origin

    Get PDF
    Conventional dendritic cells (cDCs), are the major antigen-presenting cell type that bridges the innate and adaptive immune system. DCs are constantly replenished from myeloid bone marrow progenitors which latest stage, pre-cDC, leave the BM, seeds the peripheral tissues and further differentiates into two functionally and developmentally distinct subsets, cDC1 and cDC2. This study aimed to investigate DC development by assessing the trafficking of pre-cDCs and by analyzing the effect of a specific depletion of DC progenitors. The signals that regulate the recruitment of pre-cDCs to different peripheral organs are poorly understood. Therefore, this study aimed to identify pre-cDCs in different peripheral organs and to find differences in expression pattern of trafficking receptors. In this study 39 trafficking receptors have been identified to be expressed on pre-cDCs of the analysed tissues and showed differences in the expression patterns between peripheral organs. These receptors are interesting candidates to further study differences in the recruitment of pre-cDCs to different peripheral tissues This can provide possibilities to influence the recruitment of pre-cDCs in certain diseases, where the replenishment of cDCs is accelerated. To generate a DC deficient model, DNGR-1/ CLEC9A expressing cells and its progeny were depleted by crossing Clec9a-Cre mice to Rosa-lox-STOP-lox- diphtheria toxin (DTA) mice. Despite cDC progenitors being diminished in these mice, as expected, cells that phenotypically resemble cDC2 arise independent of conventional DC progenitors. As these cells show somatic rearrangements of the Ig-heavy gene locus, typical for lymphoid cells, they were termed lymphoid DC2. A lymphoid origin of DCs has been shown in vitro as well as in adoptive transfer studies, however, the reason for this dual origin and under which physiological settings lymphoid derived DC2 develop and replenish myeloid-derived cDCs is unknown. To test the hypothesis that lymphoid DCs represent a subset of cells with distinct functions that replace myeloid-derived DCs in certain types of diseases, functional analyses were performed. Indeed, less lymphoid DC2 showed TNFα expression after LPS stimulation compared to DC2 from control mice. Furthermore, less lymphoid DC2 showed migration towards CCR7 ligands suggesting a migration defect. Additionally, increased cell death of lymphoid DC2 compared to DC2 from control mice was found in vitro. Increased cell death, on the one hand, provides evidence that lymphoid DC2 behave different from bona fide cDC2, on the other hand it impedes the interpretation of quantitative functional analyses, such as migration assays. Taken together, depletion of myeloid DC progenitors in Clec9aCreRosaDTA mice provides an artificially induced situation in which DC2 like cells can develop in the absence of myeloid DC progenitor. Furthermore, preliminary findings indicate that lymphoid DC2 show functional differences to bona fide cDC2 which argues for the requirement of a redundant developmental pathway to create a situation adapted repertoire of cells

    Clec9a-Mediated Ablation of Conventional Dendritic Cells Suggests a Lymphoid Path to Generating Dendritic Cells In Vivo

    Get PDF
    Conventional dendritic cells (cDCs) are versatile activators of immune responses that develop as part of the myeloid lineage downstream of hematopoietic stem cells. We have recently shown that in mice precursors of cDCs, but not of other leukocytes, are marked by expression of DNGR-1/CLEC9A. To genetically deplete DNGR-1-expressing cDC precursors and their progeny, we crossed Clec9a-Cre mice to Rosa-lox-STOP-lox-diphtheria toxin (DTA) mice. These mice develop signs of age-dependent myeloproliferative disease, as has been observed in other DC-deficient mouse models. However, despite efficient depletion of cDC progenitors in these mice, cells with phenotypic characteristics of cDCs populate the spleen. These cells are functionally and transcriptionally similar to cDCs in wild type control mice but show somatic rearrangements of Ig-heavy chain genes, characteristic of lymphoid origin cells. Our studies reveal a previously unappreciated developmental heterogeneity of cDCs and suggest that the lymphoid lineage can generate cells with features of cDCs when myeloid cDC progenitors are impaired

    Environmental signals rather than layered ontogeny imprint the function of type 2 conventional dendritic cells in young and adult mice

    Get PDF
    Conventional dendritic cells (cDC) are key activators of naive T cells, and can be targeted in adults to induce adaptive immunity, but in early life are considered under-developed or functionally immature. Here we show that, in early life, when the immune system develops, cDC2 exhibit a dual hematopoietic origin and, like other myeloid and lymphoid cells, develop in waves. Developmentally distinct cDC2 in early life, despite being distinguishable by fate mapping, are transcriptionally and functionally similar. cDC2 in early and adult life, however, are exposed to distinct cytokine environments that shape their transcriptional profile and alter their ability to sense pathogens, secrete cytokines and polarize T cells. We further show that cDC2 in early life, despite being distinct from cDC2 in adult life, are functionally competent and can induce T cell responses. Our results thus highlight the potential of harnessing cDC2 for boosting immunity in early life.</p

    Dendritic cell progenitor trafficking and identification and functional analyses of dendritic cells with distinct developmental origin

    No full text
    Conventional dendritic cells (cDCs), are the major antigen-presenting cell type that bridges the innate and adaptive immune system. DCs are constantly replenished from myeloid bone marrow progenitors which latest stage, pre-cDC, leave the BM, seeds the peripheral tissues and further differentiates into two functionally and developmentally distinct subsets, cDC1 and cDC2. This study aimed to investigate DC development by assessing the trafficking of pre-cDCs and by analyzing the effect of a specific depletion of DC progenitors. The signals that regulate the recruitment of pre-cDCs to different peripheral organs are poorly understood. Therefore, this study aimed to identify pre-cDCs in different peripheral organs and to find differences in expression pattern of trafficking receptors. In this study 39 trafficking receptors have been identified to be expressed on pre-cDCs of the analysed tissues and showed differences in the expression patterns between peripheral organs. These receptors are interesting candidates to further study differences in the recruitment of pre-cDCs to different peripheral tissues This can provide possibilities to influence the recruitment of pre-cDCs in certain diseases, where the replenishment of cDCs is accelerated. To generate a DC deficient model, DNGR-1/ CLEC9A expressing cells and its progeny were depleted by crossing Clec9a-Cre mice to Rosa-lox-STOP-lox- diphtheria toxin (DTA) mice. Despite cDC progenitors being diminished in these mice, as expected, cells that phenotypically resemble cDC2 arise independent of conventional DC progenitors. As these cells show somatic rearrangements of the Ig-heavy gene locus, typical for lymphoid cells, they were termed lymphoid DC2. A lymphoid origin of DCs has been shown in vitro as well as in adoptive transfer studies, however, the reason for this dual origin and under which physiological settings lymphoid derived DC2 develop and replenish myeloid-derived cDCs is unknown. To test the hypothesis that lymphoid DCs represent a subset of cells with distinct functions that replace myeloid-derived DCs in certain types of diseases, functional analyses were performed. Indeed, less lymphoid DC2 showed TNFα expression after LPS stimulation compared to DC2 from control mice. Furthermore, less lymphoid DC2 showed migration towards CCR7 ligands suggesting a migration defect. Additionally, increased cell death of lymphoid DC2 compared to DC2 from control mice was found in vitro. Increased cell death, on the one hand, provides evidence that lymphoid DC2 behave different from bona fide cDC2, on the other hand it impedes the interpretation of quantitative functional analyses, such as migration assays. Taken together, depletion of myeloid DC progenitors in Clec9aCreRosaDTA mice provides an artificially induced situation in which DC2 like cells can develop in the absence of myeloid DC progenitor. Furthermore, preliminary findings indicate that lymphoid DC2 show functional differences to bona fide cDC2 which argues for the requirement of a redundant developmental pathway to create a situation adapted repertoire of cells

    Clec9a-Mediated Ablation of Conventional Dendritic Cells Suggests a Lymphoid Path to Generating Dendritic Cells In Vivo

    No full text
    Conventional dendritic cells (cDCs) are versatile activators of immune responses that develop as part of the myeloid lineage downstream of hematopoietic stem cells. We have recently shown that in mice precursors of cDCs, but not of other leukocytes, are marked by expression of DNGR-1/CLEC9A. To genetically deplete DNGR-1-expressing cDC precursors and their progeny, we crossed Clec9a-Cre mice to Rosa-lox-STOP-lox-diphtheria toxin (DTA) mice. These mice develop signs of age-dependent myeloproliferative disease, as has been observed in other DC-deficient mouse models. However, despite efficient depletion of cDC progenitors in these mice, cells with phenotypic characteristics of cDCs populate the spleen. These cells are functionally and transcriptionally similar to cDCs in wild type control mice but show somatic rearrangements of Ig-heavy chain genes, characteristic of lymphoid origin cells. Our studies reveal a previously unappreciated developmental heterogeneity of cDCs and suggest that the lymphoid lineage can generate cells with features of cDCs when myeloid cDC progenitors are impaired

    Loss of direct adrenergic innervation after peripheral nerve injury causes lymph node expansion through IFN-γ

    No full text
    Peripheral nerve injury can cause debilitating disease and immune cell-mediated destruction of the affected nerve. While the focus has been on the nerve-regenerative response, the effect of loss of innervation on lymph node function is unclear. Here, we show that the popliteal lymph node (popLN) receives direct neural input from the sciatic nerve and that sciatic denervation causes lymph node expansion. Loss of sympathetic, adrenergic tone induces the expression of IFN-γ in LN CD8 T cells, which is responsible for LN expansion. Surgery-induced IFN-γ expression and expansion can be rescued by β2 adrenergic receptor agonists but not sensory nerve agonists. These data demonstrate the mechanisms governing the pro-inflammatory effect of loss of direct adrenergic input on lymph node function

    table_1_Clec9a-Mediated Ablation of Conventional Dendritic Cells Suggests a Lymphoid Path to Generating Dendritic Cells In Vivo.xlsx

    No full text
    <p>Conventional dendritic cells (cDCs) are versatile activators of immune responses that develop as part of the myeloid lineage downstream of hematopoietic stem cells. We have recently shown that in mice precursors of cDCs, but not of other leukocytes, are marked by expression of DNGR-1/CLEC9A. To genetically deplete DNGR-1-expressing cDC precursors and their progeny, we crossed Clec9a-Cre mice to Rosa-lox-STOP-lox-diphtheria toxin (DTA) mice. These mice develop signs of age-dependent myeloproliferative disease, as has been observed in other DC-deficient mouse models. However, despite efficient depletion of cDC progenitors in these mice, cells with phenotypic characteristics of cDCs populate the spleen. These cells are functionally and transcriptionally similar to cDCs in wild type control mice but show somatic rearrangements of Ig-heavy chain genes, characteristic of lymphoid origin cells. Our studies reveal a previously unappreciated developmental heterogeneity of cDCs and suggest that the lymphoid lineage can generate cells with features of cDCs when myeloid cDC progenitors are impaired.</p

    data_sheet_1_Clec9a-Mediated Ablation of Conventional Dendritic Cells Suggests a Lymphoid Path to Generating Dendritic Cells In Vivo.PDF

    No full text
    <p>Conventional dendritic cells (cDCs) are versatile activators of immune responses that develop as part of the myeloid lineage downstream of hematopoietic stem cells. We have recently shown that in mice precursors of cDCs, but not of other leukocytes, are marked by expression of DNGR-1/CLEC9A. To genetically deplete DNGR-1-expressing cDC precursors and their progeny, we crossed Clec9a-Cre mice to Rosa-lox-STOP-lox-diphtheria toxin (DTA) mice. These mice develop signs of age-dependent myeloproliferative disease, as has been observed in other DC-deficient mouse models. However, despite efficient depletion of cDC progenitors in these mice, cells with phenotypic characteristics of cDCs populate the spleen. These cells are functionally and transcriptionally similar to cDCs in wild type control mice but show somatic rearrangements of Ig-heavy chain genes, characteristic of lymphoid origin cells. Our studies reveal a previously unappreciated developmental heterogeneity of cDCs and suggest that the lymphoid lineage can generate cells with features of cDCs when myeloid cDC progenitors are impaired.</p
    corecore