42 research outputs found

    MODELLING OF AEROBIC REACTORS FOR LANDFILL METHANE OXIDATION

    Get PDF
    Landfill gas is produced by anaerobic degradation of organic waste. Landfills are one of the principal anthropogenic sources of atmospheric methane, a strong greenhouse gas. At the present, abatement techniques of landfill biogas consist in the energy recovery for the production of electrical energy, when the percentage of methane is in the order of 40 - 50% v/v. In this case, the complete combustion and the subsequent functioning of the engine for the production of energy is ensured. For percentages of the order of 30% v/v, the extracted biogas is conveyed to a system of gas flare which ensures the complete thermal oxidation before entering into the atmosphere. In all cases of low production of landfill gas or low methane concentration (small landfills or landfills in the terminal phase of stabilization), the combustion of biogas is difficult. In such conditions the biogas produced is often directly emitted into the atmosphere. Technical specifications for the operation of gas flares indicate a minimum flow of 50 Nm3/h and a methane concentration of 30% v/v. A flow of this size is equivalent to an annual emission of approximately 3200 tons of CO2eq. It is however known that methane can be metabolized by specific CH4-reducing microorganisms. The aim of this work is the evaluation of the efficiency of an aerobic bioreactor for the oxidation of methane, through the application of a mathematical model representative of the biological oxidation process, by implementing a calculation algorithm. The developed mathematical model describes the evolution of the phenomenon of methane oxidation. It is able to evaluate the efficiency of the system under varying operating conditions with the aim of optimizing the performance of the "biofilter". Literature data have been used in order to build the model and to drawing up the equations that describe the process. Through the implementation of the model in the MATLAB software, good results on the performance of this system were obtained. The factors that mostly affect the efficiency of the process of methane oxidation and that actually regulate the entire process have been highlighted in this work. The results obtained from the mathematical model showed that the biofilter system is simple to implement and manage and allows the achievement of high efficiency of methane oxidation

    Non-Occlusive Mesenteric Ischemia in Children With Diabetic Ketoacidosis: Case Report and Review of Literature

    Get PDF
    IntroductionDespite the use of technology, recurrent diabetic ketoacidosis (DKA) prevention remains an unmet need in children and adolescents with T1D and may be accompanied by life-threatening acute complications. We present a rare case of non-occlusive mesenteric ischemia (NOMI) with overt manifestation after DKA resolution and a discussion of recent literature addressing DKA-associated NOMI epidemiology and pathogenesis in children and adolescents.Case PresentationA 13-year-old female with previously diagnosed T1D, was admitted at our emergency department with hypovolemic shock, DKA, hyperosmolar state and acute kidney injury (AKI). Mildly progressive abdominal pain persisted after DKA correction and after repeated ultrasound evaluations ultimately suspect for intestinal perforation, an intraoperative diagnosis of NOMI was made.ConclusionThe diagnosis of DKA-associated NOMI must be suspected in pediatric patients with DKA, persistent abdominal pain, and severe dehydration even after DKA resolution

    The impact of virtual simulation tools on problem-solving and new product development organization

    No full text
    International audienceNew product development nowadays makes heavy use of IT instruments such as virtual simulation tools. The main motivation for introducing virtual simulation tools in new product development is to speed up development and lower its cost. Virtual simulation tools, however, do much more. They introduce profound changes in the organization, including the nature of problem-solving, bearing the potential to increase new product development performance beyond cost and lead time reduction. Understanding these profound changes, we argue, holds the key to unlocking the potential of virtual simulation tools for improving new product development performance, including more innovative products. We support our argument with a case study from the European auto industry
    corecore