90 research outputs found

    Insights on Multi-Agent Systems Applications for Supply Chain Management

    Get PDF
    In this paper, we review relevant literature on the development of multi-agent systems applications for supply chain management. We give a general picture of the state of the art, showing the main applications developed using this novel methodology for analyzing diverse problems in industry. We also analyze generic frameworks for supply chain modelling, showing their main characteristics. We discuss the main topics addressed with this technique and the degree of development of the contributions.Universidad de Sevilla V PPIT-USPiano della Ricerca Dipartimentale 2016-2018 of DICAR-UniC

    Building Resilience in Closed-Loop Supply Chains through Information-Sharing Mechanisms

    Get PDF
    In this paper we reflect on the role of information sharing on increasing the resilience of supply chains. Specifically, we highlight the lack of studies addressing this relevant topic in closed-loop supply chains. Then, we introduce the works covered by the Special Issue “Information Sharing on Sustainable and Resilient Supply Chains” to investigate the relationships between information sharing and resilience in sustainable supply chains.Universidad de Sevilla V PPIT-USDICAR-UniCT (Dpto. Ing. Civil y Arqu. Univ. Catania) Plan de investigación Departamental 2016-201

    On bullwhip-limiting strategies in divergent supply chain networks

    Get PDF
    The amplification of demand variation in a supply chain network (SCN) is a well-known phenomenon called the bullwhip effect. This effect generates a large volume of inefficiencies as it moves a greater number of units than necessary, increases stock and generates stock-outs. There are two different approaches for avoiding and/or limiting this detrimental phenomenon that have received attention in the literature: Collaboration and information sharing in SCNs on one hand, and the adoption of smoothing replenishment rules on the other. The effectiveness of both approaches have been often analyzed only for “serial linked” SCNs, which is a supply network structure rarely found in real-life. In order to give an insight of how these techniques would perform in more generic SCNs, a divergent SCN has been benchmarked against the classical serial SCN. The computational experience carried out show that the bullwhip effect can be considerably reduced by collaboration or the smoothing replenishment rules in divergent SCNs, but it always performs worse than the serial SCN due to its inherent complexity

    On returns and network configuration in supply chain dynamics

    Get PDF
    This research focuses on how two common modeling assumptions in the Bullwhip Effect (BWE) literature (i.e., assuming the return of the excess of goods and assuming a serial network) may distort the results obtained. We perform a robust design of experiments where the return condition (return vs. no return) and the configuration of the Supply Chain Network (SCN) (serial vs. divergent) are systematically analyzed. We find an important interaction between these assumptions: the impact of returns on the BWE strongly depends on the SCN configuration. This study highlights the importance of accurately modeling SCNs to properly assess SCNs managers.Junta de Andalucía P08-TEP-0363

    The impact of the supply chain structure on bullwhip effect

    Get PDF
    The aim of this paper is to study how the structural factors of supply chain networks, (i.e. the number of echelons, the number of nodes and the distribution of links) impact on its dynamics performance (i.e. bullwhip effect). To do so, we systematically model multiple structures according to a robust design of experiments and simulate such structures under two different market demand scenarios. The former emulates a stationary condition of the market, while the latter reproduce the extreme volatility and impetuous alteration of the market produced by the current economic recession. Results contribute to the scientific debate on supply chain dynamics by showing how the advocated number of echelons is not the only structural factor that exacerbates the bullwhip effect. In particular, under a sudden shock in market demand, the number of nodes and the divergence of the supply chain network affect the supply chain performance.Ministerio de Economía y Competitividad DPI2013-44461-P/DP

    Demand sharing inaccuracies in supply chains: A simulation study

    Get PDF
    We investigate two main sources of information inaccuracies (i.e., errors and delays) in demand information sharing along the supply chain (SC). Firstly, we perform a systematic literature review on inaccuracy in demand information sharing and its impact on supply chain dynamics. Secondly, we model several SC settings using system dynamics and assess the impact of such information inaccuracies on SC performance. More specifically, we study the impact of four factors (i.e., demand error, demand delay, demand variability, and average lead times) using three SC dynamic performance indicators (i.e., bullwhip effect, inventory variability, and average inventory). The results suggest that demand error has a negative impact on SC performance, which is exacerbated by the magnitude of the error and by low demand variability scenarios. In contrast, demand delay produces a nonlinear behavior in the supply chain response (i.e., a short delay may have a negative impact and a long delay may have a positive impact), being influenced by the supply chain configuration.Ministerio de Universidad e Investigación (Italia)Universidad de Sevilla V PPIT-USMinisterio de Ciencia e Innovación PROMISE DPI201680750

    The effect of inventory record inaccuracy in information exchange supply chains

    Get PDF
    The goal of this paper is to quantify the impact of Inventory Record Inaccuracy on the dynamics of collaborative supply chains, both in terms of operational performance (i.e. order and inventory stability), and customer service level. To do so, we model an Information Exchange Supply Chain under shrinkage errors in the inventory item recording activity of their nodes, present the mathematical formulation of such supply chain model, and conduct a numerical simulation assuming different levels of errors. Results clearly show that Inventory Record Inaccuracy strongly compromises supply chain stability, particularly when moving upwards in the supply chain. Important managerial insights can be extracted from this analysis, such as the role of 'benefit-sharing' strategies in order to guarantee the advantage of investments in connectivity technologies
    corecore