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Abstract 

This research focuses on how two common modelling assumptions in the Bullwhip Effect (BWE) literature 

(i.e. assuming the return of the excess of goods and assuming a serial network) may distort the results 

obtained. We perform a robust design of experiments where the return condition (return vs. no return) and 

the configuration of the Supply Chain Network (SCN) (serial vs. divergent) are systematically analyzed. 

We find an important interaction between these assumptions: the impact of returns on the BWE strongly 

depends on the SCN configuration. This study highlights the importance of accurately modelling SCNs to 

properly assess SCNs managers.  

Keywords: Returns, Bullwhip Effect, Transport, Divergent Supply Chain, Serial Supply Chain, 

Simulation. 

 

1. Introduction 

Bullwhip Effect (BWE) is undoubtedly one of the most widely investigated phenomena 

in the modern day Supply Chain Network (SCN) management research (Haughton 2009, 

Nepal et al. 2012, Cantor and Katok 2012, Li and Liu 2013, Zotteri 2013, Turrisi et al. 

2013). In the last decade, several studies have been aimed towards a better understanding 

of the causes of BWE, as well as their economic consequences and remedies. In order to 

analyze this phenomenon under real business world conditions, increasingly complex 

mathematical representations of SCNs (such as multi-product scenarios (Potter et al. 

2009, Wangphanich et al. 2010), stochastic lead times (Chatfield et al. 2004, Dominguez 

et al. 2014), production/distribution capacity constraints (Spiegler and Naim 2014, 

Cannella et al. 2014a), reverse logistics (Zhou et al. 2005, Turrisi et al. 2013) and so on) 

have been developed. Despite this, until now, only a few studies have focused on how the 

modelling assumptions can alter (i.e. overestimating or underestimating) the outcome of 

the BWE analysis. In this line, the recent work by Chatfield and Pritchard (2013) 

represents an interesting effort in a relatively new stream on BWE research aimed at 

improving our understanding of SCN modelling assumptions. These authors analyze the 

impact of the allowance/disallowance of the return of goods on the BWE in a four echelon 

serial SCN. Within the former assumption, orders may be negative in size, which 

essentially model the return of goods. All returns are sent to the upstream partner (i.e. 

back to the node they originally came from) where they become part of the upstream 

node’s inventory. In the latter assumption orders are truncated at zero units, not allowing 

the return of goods to the upstream partners.  

As underlined by Chatfield and Pritchard (2013), the literature on BWE has almost 

universally accepted the assumption that orders may be negative in size even though this 

is an unusual assumption in the literature at large. They prove that SCNs allowing returns 

may result in a significantly larger BWE. Furthermore, the increase in order variance due 
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to the returns may be quite dramatic at the upper echelons of a SCN. Thus, according to 

the results of Chatfield and Pritchard (2013), the BWE is overestimated if a real-life SCN 

that restrict returns is modelled under the negative orders assumption. Overall, their 

investigation of the impact of returns on the BWE has questioned the default assumption 

(practically universal in BWE modelling), that returns are permitted. 

One extremely interesting research proposal is to analyze whether this ground-breaking 

finding continues to hold for more complex and realistic SCN configurations than a 

simple serial SCN. In fact, the configuration of the SCN is assumed to be serially-linked 

in most of the existent literature related to the BWE (see Wei et al., 2013; Li and Liu, 

2013; Trapero et al., 2012; Cantor and Katok, 2012; Liu et al., 2009; O´Donell et al. 2009; 

Ouyang, 2007; Machuca and Barajas, 2004; Chatfield et al., 2004; Dejonckheere et al., 

2004, among others). Thus, we contribute to this line of research by analyzing how these 

two universally adopted modelling assumptions impact on the BWE and transportation 

issues, and their modelling and managerial implications. To do so, we compare the 

performance of the classical serial SCN and that of a complex divergent SCN under the 

assumptions of allowance/disallowance of negative orders. We first model a four-echelon 

serial SCN using SCOPE, a Multi-Agent Systems (MAS) based SCN simulation tool 

(Dominguez et al., 2013). Then, we perform a similar computational experience with a 

four-echelon divergent SCN model (i.e. 8 Retailer, 4 Wholesaler, 2 Distributor and 1 

Manufacturer), in which each node is furnished by two downstream nodes. Finally, we 

analyze the results obtained by performing an analysis of variance (ANOVA). The results 

show a strong interaction effect between the two modelling assumptions under analysis, 

as the impact of the returns assumption on the BWE is different on the two configurations. 

More specifically, the divergent SCN is less affected by the return of goods than the serial 

SCN, due to the lower return of goods observed. This reduction in returns is caused by 

the compensation of independent demand streams received by nodes of the divergent 

SCN (portfolio effect).  

In addition, the divergent SCN experiences a lower increase in transportation costs as 

compared to those in the serial SCN under the returns assumption. In case of allowing the 

return of goods, the increase in the volume of transportation due to the two-way transport 

(and its associated costs) is lower in the divergent SCN than in the serial SCN. In case of 

a restriction in the return of goods, the “lumpy” demands generated (one or more zero-
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sized orders separating positive orders) and its associated costs derived from the inactive 

periods of transport facilities are also lower in the divergent SCN than in the serial SCN. 

The rest of the paper is organized as follows: Section 2 presents a background on BWE. 

Section 3 briefly describes the methodological approach and the model verification. 

Section 4 describes the serial SCN and the divergent SCN models. Section 5 is the 

measurement system and the design of experiments. Section 6 presents the results and 

findings. Section 7 is a summary of modelling and managerial implications and finally 

Section 8 is the conclusion and limitations of the research. 

 

2. Background: BWE and modelling assumption 

Managing a SCN is a dynamic decision task shown to be prone to systematic errors, 

collectively referred to as the BWE (Cantor and Katok, 2012). The BWE refers to the 

tendency for order variability to increase within a SCN as orders move upstream from 

customer sales to production (Croson et al., 2014). BWE is observed frequently in 

industries (Chen and Lee, 2012), and it has been estimated that the economic 

consequences of this phenomenon can be as much as 30% of factory gate profits (Metters, 

1997). Moreover, the recent, sudden, severe and synchronized trade collapse has led to 

an exasperation of BWE on several manufacturing sectors (Dooley et al., 2010; Cannella 

et al., 2014b). Considering the transmission mechanism of global SCN, this exasperation 

has created a detrimental “domino effect” throughout the world economy. Due to the 

magnitude of this phenomenon, it has received a lot of attention by SCN managers and 

researchers (Zotteri, 2013; Li and Liu, 2013). 

Jay Forrester (1961) was among the first researchers to describe this phenomenon and 

called the effect "demand amplification" (Disney and Lambrecht, 2008). Yet, the research 

into the ‘BWE’ problem started even prior to Forrester’s seminal contribution, and a wide 

range of seminal works were made prior to its ‘rediscovery’ in the late 1990’s (Holweg 

and Disney, 2005). In fact, Thomas Warner Mitchell (1924), an economist at the Federal 

Trade Commission, first identified the mechanisms through which retailers, caught short 

of supply, increase their orders to suppliers. At the end of the 21st century, Lee, 

Padmanabhan and Whang (1997a,b) published two of the most popular papers in the field 

of SCN management. Based on a case study, they identified four causes of Mitchell’s 

false demand phenomenon and renamed it “BWE”. 
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Due to the magnitude of the BWE problem, since Mitchell’s work (1924) numerous 

studies have been generated to better understand causes, economics consequences and 

remedies to this effect. The investigation into this phenomenon has passed through 

diverse phases (Holweg and Disney, 2005), producing several streams of research 

(Holweg et al., 2005). Zotteri (2013) identifies three main streams (i.e. theoretical, 

empirical and natural experiment). The theoretical stream is devoted to the identification 

of the causes and potential solutions, with a specific focus on information as a potential 

remedy for the BWE (e.g. Baganha and Cohen 1998; Chen et al., 2000; Cachon and 

Fisher, 2000; Lee et al., 2004). In the second stream, some contributions use the classic 

Beer Game (see e.g. Croson and Donohue, 2005; Croson and Donohue, 2006) or one of 

its variants (Anderson and Morrice, 2000; Cantor and Katok, 2012; Croson et al., 2014) 

to create empirical data in a controlled environment and test hypothesis on the technical 

and behavioral causes of the BWE and its potential remedies. Finally, the natural 

experiment provide evidence for the existence, size and consequences of the BWE in 

several companies (e.g. Cachon et al., 2007; Dooley et al., 2010; Altamonte et al., 2012; 

Zavacka et al., 2012; Bray and Mendelson, 2012; Shan et al. 2014).  

Similarly, Trapero et al. (2014) identify two different streams. The former concerns the 

theoretical analysis, which is based on initial assumptions about the underlying demand 

process and the stock policy in order to develop different expressions that quantify the 

BWE. The latter is a more practical approach measure of the BWE with actual data 

collected from different companies involved in the SCN. An analogous classification is 

provided by Miragliotta (2006), who considers that the BWE literature can be divided 

into three streams: BWE measurement and empirical assessment, causes of the BWE and 

remedies for the BWE. In general, we note how researchers tend to differentiate two 

typologies of works, namely theoretical and empirical. 

In the field of theoretical study further sub classifications can be found. For instance, 

Nepal et al. (2012) identify three streams: the first stream focuses on determining the 

impact of forecasting techniques, while the other two streams include an examination of 

the impact of operations management parameters (such as ordering policy, inventory 

management policy, and production variation and batching) and SCN dynamics (like 

information sharing) on the BWE. Other authors classify the theoretical studies in relation 

of adopted methodological approaches for analysing the demand amplification 

phenomenon. Riddalls et al. (2000) identify four main methodologies: Continuous Time 
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Differential Equation models, Discrete Time Difference Equation models, Discrete Event 

Simulation Systems, and Classical Operational Research methods. Disney and Lambrecht 

(2008) indentify the Laplace Transform method, Z-Transform method, Fourier transform 

method, H-infinity control, Ideal Filter, System Dynamics and Discrete Event Simulation. 

Nilakantan (2010) divide the study of the dynamics of SCN systems in three important 

dimensions, namely: the setting: Deterministic vs. Stochastic; the focus: Control and 

Stability vs. Optimization; and the time frame of reference: Continuous Time vs. Discrete 

Time. 

Several further classifications and taxonomies of the different streams of the BWE studies 

have been produced (e.g. Dejonckheere et al., 2004; Disney et al., 2004; Geary et al., 

2006; Lalwani et al., 2006; Sarimveis et al., 2006). However, to the best of our 

knowledge, there is a stream of the theoretical studies dealing with the BWE that has not 

yet been explicitly acknowledged by the scientific community: the studies aimed at 

gaining a higher understanding of SCN modelling assumptions. Despite the importance 

of this topic, few studies have focused on how the adoption of specific assumptions can 

affect the results of the BWE assessment. In this stream, one of the pioneer efforts is 

represented by the study of Towill et al. (2007). They propose a framework for properly 

studying the BWE, indicating the appropriate typology of endogenous input that can be 

adopted in BWE analysis in order to study different characteristics of the SCN. Recently, 

Chatfield (2013) and Chatfield and Pritchard (2013) present two works. The former study 

show how the assumption that a multi-stage SCN can be faithfully modeled for BWE 

investigation purposes as a set of two-stage models is faulty, and that the decomposability 

assumption leads to significant underestimation of the phenomenon. The latter study 

shows how that the assumption of “negative orders” systematically overestimates the 

BWE, and it is the starting point of our research. 

Our investigation fits within this new stream of research: we provide insights on how the 

assumption of “negative orders” has a different impact on the BWE depending on whether 

the SCN shows a serially-linked configuration or a divergent configuration. In other 

words, we show how a strong interaction between two modelling assumption may distort 

the results obtained for the BWE. 
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3. Methodology and model verification 

Due to the complexity of SCN management, it is very difficult for managers and decision-

makers to predict the effects that new management policies will have on end-customers 

and/or the global performance of the SCN and, consequently to decide which are the best 

strategies. Thus, the existence of modeling tools able to cope with the complex 

characteristics of modern SCNs (such as internal and external uncertainties and the high 

number of members) is very helpful to managers and of great benefit for enterprises 

(Dominguez and Framinan, 2013).  

Classical operational research and analytic methods are not always able to handle the 

characteristics of complex SCNs (Long and Zhang, 2014; Lee and Kim, 2008; Holweg 

and Disney, 2005; Riddals et al., 2000). Therefore other methodologies are required to 

model these kind of systems. The use of simulation to model SCNs has increased in the 

past years, due to its ability to handle the dynamics and stochastic behavior of SCNs and 

to enable managers to analyze and evaluate the effects of alternative processes or 

operation modifications (Chan and Prakash, 2012; Stefanovic et al., 2009; Munoz and 

Clements, 2008; Chatfield et al., 2001). Specifically, Multi-Agent Systems (MAS) has 

been used to model multiple problems involving systems of differing size and structure 

due to its scalability and flexibility (Jetly et al., 2012). 

There is great interest in modeling SCNs as (MAS) (Surana et al., 2005; Pathak et al., 

2007) because there is a natural correspondence between SCN participants and agents in 

a simulation model, since SCNs tend to be decentralized systems with participants acting 

independently (Long and Zhang, 2014). MAS is a promising alternative to the commonly 

used mathematical programming optimization techniques due to its ability to implement 

sophisticated rules of agents on the local level and to relate them to the global outcomes 

(Mizgier et al., 2012). Furthermore, MAS have the capacity to consider the interactions 

between large numbers of heterogeneous firms, allowing SCN managers to improve their 

understanding of the whole system and predicting the consequences of singular 

interventions on the global performance (Hearnshaw and Wilson, 2013). 

The use of MAS applied to SCN modeling in the past years resulted in the development 

of several MAS frameworks, SCN simulation tools and applications on industry, such as 

those of Yu and Wong (2015), Long and Zhang (2014), Medini and Rabénasolo (2014), 

Long (2014), Ogier et al. (2013), Dominguez and Framinan, (2013), Santa-Eulalia et al. 
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(2012), Mishra et al. (2012), Govindu and Chinnam (2010,2007), Chatfield et al. (2007, 

2006), Julka et al. (2002a,b), and Swaminathan et al. (1998) among others. 

The SCNs to be analyzed in this paper have been modeled using SCOPE (Dominguez 

and Framinan, 2013), a MAS-based software platform specifically designed for the 

simulation of complex SCN structures. The simulator was implemented in Java and uses 

Swarm (a software platform for MAS development). In order to verify SCOPE, we 

perform a benchmark with results provided by other major cited authors in the SCN 

literature, in particular with Chen et al. (2000), Dejonckheere et al. (2004) and Chatfield 

et al. (2004) (see Table 1). The SCN modelled is a mono-product four-echelon serial 

formation. Table 1 summarizes the Total Variance Amplification in each echelon i 

(𝑇𝑉𝐴𝑚𝑝𝑖) provided by the different authors. 𝑇𝑉𝐴𝑚𝑝𝑖 measures the total amplification of 

orders for a given echelon i (see Section 5 for more details). The first row in Table 1A 

shows the results analytically obtained by Chen et al. (2000) for a given set of values for 

the parameters of the SCN (lead time, forecast, etc.). The next row shows the results 

obtained by Chatfield et al. (2004) using SISCO (a MAS-based software for SCN 

simulation) for an identical set of model parameters. In the third row, the results obtained 

by SCOPE for the same set of model parameters are shown. Table 1B summarizes the 

comparison with Dejonckheere et al. (2004) for a different set of model parameters. These 

authors calculate 𝑇𝑉𝐴𝑚𝑝𝑖 using a Control Theory methodology. As in Table 1A, it 

follows the results provided by Chatfield et al. (2004) using SISCO and the results 

obtained by SCOPE. For further information on SCOPE and on the validation process 

please see Dominguez and Framinan (2013) and Dominguez et al. (2014).  

 

 Retailer Wholesaler Distributor Factory 

A 𝑇𝑉𝐴𝑚𝑝𝑖 

Chen et al. 2000 1.89 3.57 6.74 12.73 

Chatfield et al. 2004 vs Chen et al. 2000 1.90 3.59 6.70 12.84 

SCOPE vs Chen et al. 2000 1.90 3.53 6.66 12.58 

B 𝑇𝑉𝐴𝑚𝑝𝑖 

Dejonckheere et al. 2004 1.67 2.99 5.72 11.43 

Chatfield et al. 2004 vs Dejonckheere et al. 2004 1.67 2.99 5.72 11.43 

SCOPE vs Dejonckheere et al. 2004 1.71 3.10 5.96 11.93 

Table 1.  Model verification. 
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4. Model details 

As mentioned before, we model a serial SCN and a divergent SCN. The serial SCN is 

identical to that presented in Chatfield et al. (2004) or Chatfield and Pritchard (2013). It 

has four stages (i=1,..,4), with one factory, one distributor, one wholesaler and one retailer 

(Figure 1). The lower node places orders to its next upper node and this node fills these 

orders. The customer does not fill orders and the factory places orders with an outside 

supplier. A detailed description is provided in Chatfield et al. (2004) and Chatfield and 

Pritchard (2013). 

 

 

Figure 1. SCNs under analysis. 

 

A divergent SCN is characterized by a tree-like structure, where every stock point in the 

system receives supply from exactly one higher level stock point, but supplies to one or 

more lower level stock points (Hwarng et al., 2005). In order to facilitate a comparative 

analysis the divergent SCN modelled has to be similar to the serial SCN. Hence, the 

resultant SCN has the identical values of parameters, the same number of stages and, due 

to the divergent topology, an increasing number of nodes per stage. Due to the prospective 

nature of this work, the resultant divergent SCN has the minimum complexity, and so, 

the structure of the SCN maintains the vertical symmetry with each node supplying two 

nodes downstream (see Figure 1).  
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We model the divergent SCN by adapting the serial SCN model from Chatfield et al. 

(2004) and Chatfield and Pritchard (2013), as follows: 

- Customers Demand. A demand C,j is observed by each customer j, following 

the same normal distribution with mean 𝜇𝐶,𝑗, estimated by �̅�𝐶,𝑗, and variance 𝜎𝐶,𝑗
2 , 

estimated by 𝑠𝐶,𝑗
2 . 

- Lead Time. 𝐿𝑖𝑗 the lead time of a node (i,j)  is assumed stationary, independent 

and identically distributed with mean  𝜇𝐿𝑖𝑗
 estimated by  �̅�𝑖𝑗, and 

variance 𝜎𝐿𝑖𝑗

2 estimated by 𝑠𝐿𝑖𝑗

2  . The lead time of interest, or “protection period”, 

in periodic order-up-to systems, may also include safety lead time or other 

constant additions to the physical lead time, depending on the inventory policy or 

other situational characteristics. According to Chatfield and Pritchard (2013), all 

nodes in the SCN use the (R, S) policy (where R is the review period and S is the 

order-up-to level) with R=1, and the time period of protection of a node (i,j) is 

 𝐿𝑖𝑗+R.  

- Lead-Time Demand. Let 𝑋𝑖𝑗
𝑡  be the demand received by a node j in the stage i 

during the protection period L+R. Then 𝑋𝑖𝑗
𝑡  has mean 𝜇𝑋 that we estimate by �̅�𝑖𝑗

𝑡 , 

and variance 𝜎𝑋
2  that we estimate by 𝑠

𝑋𝑖𝑗
𝑡

2 . Being 𝐷𝑖𝑗
𝑡+𝑘 the demand received by a 

node j in the stage i at time t + k , we obtain 𝑋𝑖𝑗
𝑡  for an order placed at time t by 

the convolution: 

𝑋𝑖𝑗
𝑡 = ∑ 𝐷𝑖𝑗

𝑡+𝑘

𝐿+𝑅

𝑘=0

 (1) 

- Inventory Policy and Forecasting. The order-up-to level, 𝑆𝑖𝑗
𝑡 , is the base stock 

that allows the system to meet the demand during the time period 𝐿𝑖𝑗+R: 

𝑆𝑖𝑗
𝑡 = �̅�𝑖𝑗

𝑡 + 𝑧𝑠𝑋𝑖𝑗
𝑡  (2) 

Thus, at the beginning of every period t, each node j in the stage i will place an 

order to raise or lower the inventory position to 𝑆𝑖𝑗
𝑡 . 𝑠𝑋𝑖𝑗

𝑡  is an estimation of the 

standard deviation of 𝑋𝑖𝑗
𝑡 . As in Chatfield et al. (2004), the safety factor is 𝑧 = 2.0 

(service level of 97.72%). To update 𝑆𝑖𝑗
𝑡 , a node j in stage i can access to the 

demand data from previous periods (which are used to forecast �̅�𝑖𝑗
𝑡 , the expected 
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average demand at time t, �̅�𝑖𝑗
𝑡 , and its variance, 𝑠

𝐷𝑖𝑗
𝑡

2 ), and to the lead time data 

from previous periods (which are used to forecast the expected average lead time 

at time period t, �̅�𝑖𝑗
𝑡 , and its variance, 𝑠

𝐿𝑖𝑗
𝑡

2 ), and uses this information to generate 

forecasts for the average lead-time demand mean �̅�𝑖𝑗
𝑡  and variance 𝑠

𝑋𝑖𝑗
𝑡

2 , as 

indicated in (3) and (4), respectively: 

�̅�𝑖𝑗
𝑡 = (�̅�𝑖𝑗

𝑡 + 𝑅)�̅�𝑖𝑗
𝑡  (3) 

𝑠
𝑋𝑖𝑗

𝑡
2 = (�̅�𝑖𝑗

𝑡 + 𝑅)𝑠
𝐷𝑖𝑗

𝑡
2 + �̅�𝑖𝑗

𝑡 2
𝑠

𝐿𝑖𝑗
𝑡

2  (4) 

To estimate (�̅�𝑖𝑗
𝑡 , 𝑠

𝐷𝑖𝑗
𝑡

2 ), as in Chatfield and Pritchard (2013), each node uses a p-

period moving averages (MA(p)) and a p-period moving variances (MV(p)) with 

p=15. To estimate (�̅�𝑖𝑗
𝑡 , 𝑠

𝐿𝑖𝑗
𝑡

2 ), each node uses running averages, which utilizes data 

available from all previous periods. 

 

5. Metrics and experiments design 

In order to measure BWE we adopt the Total Variance Amplification (Chen et al., 2000; 

Chatfield et al., 2004), 𝑇𝑉𝐴𝑚𝑝𝑖. Furthermore, in order to enhance the comparison 

analysis between the different SCNs, the Bullwhip Slope metric described in Cannella et 

al. (2013) is also adopted. Finally, a Zero Replenishment metric (Cannella and 

Ciancimino, 2010; Sajadi et al., 2011) is used to measure the lumpy demands generated 

when returns are not allowed. These metrics are described below: 

 

1. Total Variance Amplification (𝑇𝑉𝐴𝑚𝑝𝑖). It measures the total (or cumulative) 

amplification of orders, and it is defined as the ratio of the variance of orders placed 

by node at a generic echelon i to the variance of orders placed by the customer 

(equation 5).  

𝑇𝑉𝐴𝑚𝑝𝑖 =
𝑠𝑂𝑖

2

𝑠𝑑
2  (5) 

In the serial SCN the parameter required to compute the 𝑇𝑉𝐴𝑚𝑝𝑖 on each stage is 

taken from the only node in the stage. On the contrary, in the divergent SCN it is 

necessary to find an aggregate measure for the whole stage (Dominguez et al., 2014). 

To obtain this measure, the orders of every node j in stage i (𝑂𝑖𝑗) are considered at the 
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same time and added, resulting in an aggregate order pattern for stage i: 𝐴𝑂𝑖 =

∑ 𝑂𝑖𝑗
𝑛𝑖
𝑗=1 , being 𝑛𝑖 the number of nodes in stage i. Following the same procedure, the 

aggregate end customer demand pattern can be obtained as 𝐴𝑑 = ∑ 𝑂𝐶𝑗
𝑛𝐶
𝑗=1 , being 𝑛𝐶  

the number of customers. Then, the aggregate variance of each stage (𝜎𝐴𝑂𝑖

2 , 𝜎𝐴𝑑
2 ) can 

be estimated (𝑠𝐴𝑂𝑖

2 , 𝑠𝐴𝑑
2 ), so 𝑇𝑉𝐴𝑚𝑝𝑖 can be written as: 

𝑇𝑉𝐴𝑚𝑝𝑖 =
𝑠𝐴𝑂𝑖

2

𝑠𝐴𝑑
2  (6) 

Since all customer demands are assumed to be independent and each node places 

orders independently, the aggregate variance in stage i is the sum of the variances of 

orders of each node j in stage i (𝜎𝑂𝑖𝑗

2 , 𝜎𝑂𝐶𝑗

2 ), estimated by (𝑠𝑂𝑖𝑗

2 , 𝑠𝑂𝐶𝑗

2 ), and thus, the 

calculation of 𝑇𝑉𝐴𝑚𝑝𝑖 can be written as: 

 𝑇𝑉𝐴𝑚𝑝𝑖 =
∑ 𝑠𝑂𝑖𝑗

2𝑛𝑖
𝑗=1

∑ 𝑠𝑂𝐶𝑗
2𝑛𝐶

𝑗=1

  (7) 

 

2. The Bullwhip Slope (BwSl). It summarizes the ratios obtained for each stage into a 

single measure (the slope of the linear interpolation), thus allowing a complete 

comparison between different SCNs at the network level (equation 8). A high value 

of the slope indicates a fast propagation of the BWE through the SCN, while a low 

value speaks for a smooth propagation. This metric can give an important and concise 

overview of the properties of an n-echelon SCN both in terms of bullwhip and 

inventory stability using just one indicator instead of the n values required by 𝑇𝑉𝐴𝑚𝑝𝑖 

(Cannella et al. 2013). 

𝐵𝑤𝑆𝑙 =
𝐾 ∑ 𝑝𝑖𝑇𝑉𝐴𝑚𝑝𝑖 −𝐾

𝑖=1 ∑ 𝑝𝑖
𝐾
𝑖=1 ∑ 𝑇𝑉𝐴𝑚𝑝𝑖

𝐾
𝑖=1

𝐾 ∑ 𝑝𝑖
2𝐾

𝑖=1 − (∑ 𝑝𝑖
𝐾
𝑖=1 )2

 

𝐾 is the total number of echelons 

𝑝𝑖 is the position of the ith echelon 

(8) 

 

3. Zero Replenishment (ZR).  For a periodic review order policy, a zero replenishment 

event is defined as the event in which, during a review period, a tier does not place 

orders (Cannella and Ciancimino, 2010). An order pattern characterized by a 

significant number of zero-replenishment occurrences is known in the literature as 

sporadic, intermittent or lumpy. In a given time horizon, if the demand is a positive 

and stationary signal and the parameters of the inventory replenishment rule remain 

unaltered, the occurrence of the zero-replenishment phenomenon could be indicative 
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of an erroneous excessive dimensioning of previous orders (Cannella and Ciancimino, 

2010).The zero-replenishment metric (equation 9) is the total amount of the zero-

replenishment phenomenon occurrences in the observation period T: 

 𝑍𝑅𝑖𝑗 = ∑ 𝑥𝑖𝑗(𝑡)𝑇
𝑡=0  

 𝑥𝑖𝑗(𝑡) = {1 𝑖𝑓 𝑂𝑖𝑗(𝑡) = 0; 0 𝑖𝑓 𝑂𝑖𝑗(𝑡) ≠ 0} 
(9) 

 

We design a full factorial set of 12 experiments to analyze the impact of the two modeling 

assumptions under different lead time variability: 2 (Serial SCN vs. Divergent SCN) x 2 

(Returns vs. No Returns) x 3 (Lead Time c.v.=0.0; c.v.=0.25; c.v.=0.50). In order to 

simplify the comparative analysis between the serial SCN and the divergent SCN, we 

maintain other modeling parameters fixed in the simulations. We perform 50 replications 

of 5,200 periods each, with the data from the first 200 periods of each replication removed 

as warm-up. Table 2 summarizes the design of experiments. 

 

Configuration of the SCN Returns assumption Lead time variance Common initial values 

Serial SCN 

 

 

 

Divergent SCN 

Returns allowed 

 

 

 

Returns not allowed 

c.v. = 0.50 

 

  

c.v. = 0.25 

 

 

c.v. = 0.00 

 

Review period (R) = 1 

 

z = 2 

 

p = 15 

 

Lead time mean= 4 

 

Demand mean = 50 

  

Demand c.v. = 0.40 

Table 2. Design of experiments. 

 

6. Results 

We present the result of the experiments by first performing an analysis of variance 

(ANOVA) on the simulation data in order to find out the significance of the experimental 

factors, and then focusing on the different impact that the return of goods has on several 

aspects of the serial and the divergent SCNs.  

 

The different impact of returns on the BWE in serial and divergent SCNs. 

We perform an ANOVA on the three experimental factors (i.e. configuration of the SCN, 

returns assumption, and lead time variance) using BwSl as the response variable. The 

results show a very good fit with 𝑅2 (see Table 3). All the experimental factors are found 
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to be statistically significant (p<0.001) at the 95% confidence level. The results of this 

model suggest that the configuration of the SCN has a strong important impact on the 

BWE in addition to the lead time and the returns assumption, as we will see in the 

following sections of the paper. More specifically, the BWE is higher for the divergent 

SCN, as it can be seen from Figure 2. 

 

Source DF F P 𝑅2(%) 

Adjusted Model 11 1980.153 0.000 99.0 

SCN_Configuration 1 1595.208 0.000 87.5 

Returns_Assumption 1 13172.919 0.000 98.3 

Lead_Time 2 2086.126 0.000 94.8 

SCN_Configuration * 

Returns_ Assumption 
1 2197.302 0.000 90.6 

SCN_Configuration * 

Lead_Time 
2 103.062 0.000 47.5 

Returns_ Assumption * 

Lead_Time 
2 48.407 0.000 29.8 

SCN_Configuration* 

Returns_ Assumption * 

Lead_Time 

2 170.533 0.000 59.9 

Error 228    

Total  240    

 Table 3. Summarized ANOVA results for BwSl. 

 

 

Figure 2. Impact of the configuration of the SCN on the average BwSl with 95% confidence level. 
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The three interactions between the experimental factors are also statistically significant. 

There is a very strong interaction between the configuration of the SCN and the returns 

assumption, which is dominant over the others (𝑅2=90.6%). An interaction plot between 

the two experimental variables is shown in Figure 3. We can appreciate in this figure the 

strong interaction between the experimental factors, since the interaction lines are 

crossed. More specifically, when moving from allowing returns to not-allowing returns, 

the decrease in the BWE for the divergent SCN is lower than for the serial SCN. 

 

 

Figure 3. Interaction plot of the Returns Assumption and the Configuration of the SCN. 

 

Figure 4 summarizes the main results obtained from the simulation runs, showing the 

BWE under the returns allowance/disallowance assumption for the serial SCN (left 

column) and the divergent SCN (right column) for different lead time variances. 

First of all we focus on the serial SCN. Simulation output shows how the assumption of 

allowing returns has an important impact on the BWE (Chatfield and Pritchard, 2013). 

By neglecting returns, the variability of orders is reduced and thus the BWE is also 

reduced for all the experimental design.  

Now we focus on the differences between the serial and the divergent SCNs. We note 

significant differences between both SCNs under the studied assumption: the high 

increase in BWE observed for the serial SCN by allowing returns (Figure 4, left column) 

is not observed for the divergent SCN (Figure 4, right column), where this increase is 
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much lower (see also Figure 3). In fact, the interaction between these two factors (i.e. 

returns assumption and SCN configuration) has been found to be the most important one, 

with 𝑅2=90.6%. 
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Figure 4. The different impact of the returns assumption on serial and divergent SCNs. 
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In order to quantify and to compare the impact of returns on the global performance of 

both SCNs we use the BwSl metric. Figure 5 shows the percentual increase of the bullwhip 

slope (∆BwSl) derived from the returns allowance assumption. As we can note from this 

figure, the impact of returns has actually a substantial higher impact on the serial SCN as 

compared to that of the divergent SCN: maximum increase for the serial SCN is above 

200% while the maximum increase for the divergent SCN is below 50%. 

 

 

Figure 5. Differences in BWE derived from the returns allowance assumption. 

 

In view of this analysis we can formalise the first three findings of our work as follows: 

 Both modelling assumptions (i.e. returns allowance/disallowance and SCN 

configuration) are found to have a significant impact on the BWE. 

 The magnitude of the impact of returns on BWE strongly depends on the SCN 

structure. 

 Under identical parameters and market conditions, the allowance of returns has 

a higher impact on a serial SCN than on a divergent SCN. 

 

The different impact of lead time variability on returns and BWE in serial and divergent 

SCNs 

Here we address the different importance of lead time variability on the returns 

assumption depending on the SCN configuration. First, we focus on the impact that the 

lead time variability has on the returns assumption for both SCNs.  
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In Figure 5 we note how the observed differences in performance between the serial and 

the divergent SCNs caused by the returns assumption are affected by the lead time 

variability in different magnitudes: the serial SCN shows an exponential increase of 

∆BwSl as the lead time variability increases while the divergent SCN shows a linear 

increase of ∆BwSl. In addition, the slope of the linear interpolations of both curves (38.86 

for the serial SCN and 7.75 for the divergent SCN) confirms that the returns allowance 

assumption is more sensitive to the lead time variability in case of a serial SCN than in 

case of a divergent SCN. This significant interaction between the three experimental 

factors (i.e. the lead time, the SCN configuration and the returns assumption) is also 

highlighted by ANOVA, with 𝑅2=59.9%. 

Now we focus on the scenario of returns disallowance, and we analyze the impact of the 

lead time variability on both SCNs. If we plot the differences in BWE between the serial 

SCN and the divergent SCN in each echelon (ΔTVAmpi) (Figure 6), we can appreciate 

that differences between both SCNs increase upstream and become more important for 

higher values of the lead time variance. In fact, differences in BWE show an increasing 

exponential trend in the upstream direction of the SCN. Hence, in case of SCNs with a 

high number of echelons, the differences in the dynamic performance of the serial and 

the divergent SCN configurations are more critical. Furthermore, these differences are 

exacerbated by the lead time variability. Figure 7 shows how lead time variability impacts 

on the differences in BWE between the serial and the divergent SCNs. We can see how 

the differences in BWE is increased only in the last stage of both SCNs when the lead 

time variance moves from c.v.=0.00 to c.v.=0.25, but when the lead time variance is 

increased from c.v.=0.25 to c.v.=0.50, then the BWE is amplified all across the SCN 

following an exponential trend. 

The analysis of the impact of the lead time variability on returns provides the following 

findings: 

 The global impact of returns on the BWE shows a high sensitivity to the lead time 

variance in case of a serial SCN, and a low sensitivity to the lead time variance 

in case of a divergent SCN. 

 When returns are not allowed there are significant differences between the serial 

and the divergent SCNs. These differences exponentially increase upstream and 

are exacerbated by lead time variance. 
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Figure 6. Differences in BWE between serial and divergent SCNs when returns are not allowed. 

 

 

 

Figure 7. Impact of the lead time variability on the differences in BWE between serial and divergent 

SCNs when returns are not allowed. 

 

The BWE and the compensation phenomena in divergent SCNs 

The observed differences in performance between the serial and the divergent SCNs are 

caused by the so-called ‘compensation phenomena’ (Giard and Sali, 2013) that take place 

when two or more independent and identically distributed streams are added, and it is a 

well-known phenomenon in the risk pooling research field. Basically, if two streams 

𝑋1(𝜇, 𝜎) and 𝑋2(𝜇, 𝜎) with identical average (𝜇) and standard deviation (𝜎) are added, the 

resultant stream 𝑋 is given by 𝑋(2𝜇, √2𝜎), since the covariance between both streams is 
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assumed to be zero in case of two independent streams. As a consequence, the coefficient 

of variation of the combined stream (𝑐. 𝑣.(𝑋) =
√2

2

𝜎

𝜇
<

𝜎

𝜇
= 𝑐. 𝑣.(𝑋1,𝑋2)) is lower than the 

coefficient of variation of the individual streams, dampening the negative order events. 

Sucky (2009) demonstrate that, in this case, the resultant order-up-to policy leads to an 

attenuation of the relative variability of orders in each node of the divergent SCN. 

The reduction in the number of negative orders caused by the compensation phenomena 

leads to the different performances observed between the serial and the divergent SCNs. 

In order to explain the relation between the compensation phenomena and the negative 

orders we focus on a particular case (lead time c.v.=0.50). Table 4 shows the negative 

orders and the variability of orders (indicated by their c.v.) for single nodes of each 

echelon in the serial and the divergent SCNs. In the serial SCN the standard deviation of 

orders placed by each echelon increases in the upstream direction, while the average of 

orders keeps constant. This phenomenon leads to increasing order variability in the 

upstream direction and thus, an increasing number of negative orders (see Table 4A).  

This phenomenon is also observed in the divergent SCN (see Table 4B), but with an 

important difference: each node (with the exception of the retailers) receives demand 

from two nodes downstream (instead of one) and thus, since all demands are independent, 

the demand average received is the sum of the downstream demand averages, but the 

standard deviation of orders increases in a lower proportion due to the compensation 

phenomena. As a consequence, the orders placed by each node in the divergent SCN have 

lower variability and therefore they place less negative orders than the nodes of the same 

echelon in the serial SCN (see e.g. in Table 4A and 4B how a wholesaler in the divergent 

SCN places orders with c.v.= 0.81 and a total of 521 negative orders during the simulation 

time while a wholesaler in the serial SCN places orders with c.v.= 1.27 and a total of 1044 

negative orders). 

When negative orders are not permitted, orders are truncated to 0.0 and thus, a generic 

node of a serial SCN presents a higher number of truncated orders than the divergent 

SCN. Consequently, as the truncated order stream has lower variability (Chatfield and 

Pritchard, 2013), the serial SCN reveals a higher reduction in BWE than the divergent 

SCN when shifting from the returns allowed assumption to no-returns allowed 

assumption (see e.g. in Table 4C and 4A how the standard deviation of orders placed by 
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the factory in the serial SCN decreases from 198.02 to 111.51 (43.65%) while in the case 

of the factory in the divergent SCN decreases from 539.37 to 483.63 (10.33%). 

To sum up, we can summarize these finding as follows: 

 Negative orders depend on the coefficient of variation of the order pattern. In a 

divergent SCN, nodes place orders with a lower coefficient of variation than 

nodes in a serial SCN. Thus, divergent SCNs are characterised by less returns. 

 

(A) SERIAL SCN, RETURNS ALLOWED 

Single node in echelon i Orders Average Orders Std Negative Orders Orders c.v. 

Retailer 49.58 33.52 323 0.68 

Wholesaler 49.57 63.01 1044 1.27 

Distributor 49.55 118.36 1677 2.39 

Factory 49.56 198.02 1992 4.00 

 

(B) DIVERGENT SCN, RETURNS ALLOWED 

Single node in echelon i Orders Average Orders Std Negative Orders Orders c.v. 

Retailer 49.82 32.51 294 0.65 

Wholesaler 99.43 80.27 521 0.81 

Distributor 199.61 216.83 870 1.09 

Factory 399.30 539.37 1132 1.35 

 

(C) SERIAL SCN, RETURNS NOT ALLOWED 

Single node in echelon i Orders Average Orders Std Negative Orders Orders c.v. 

Retailer 50.69 33.26 0 0.66 

Wholesaler 50.63 53.35 0 1.05 

Distributor 50.59 80.56 0 1.59 

Factory 49.64 111.51 0 2.25 

 

(D) DIVERGENT SCN, RETURNS NOT ALLOWED 

Single node in echelon i Orders Average Orders Std Negative Orders Orders c.v. 

Retailer 50.22 33.50 0 0.67 

Wholesaler 100.19 84.72 0 0.85 

Distributor 200.57 208.10 0 1.04 

Factory 386.16 483.63 0 1.25 

Table 4. Negative orders placed by SCNs and its impact on the variability of orders. 

 

The different impact of returns on transportation volume and capacity utilization in 

serial and divergent SCNs 

Permitting returns will have an impact on transportation requirements (capacity) within 

the SCN (Chatfield and Pritchard, 2013) and, since transportation is a cost-intensive 
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component of most SCNs, it needs consideration. Actually, the transportation volume 

increases by allowing returns, particularly at the upper echelons of the SCN, due to 

enabling transport in the upstream direction (two-way transport) as well as to the 

increased order variance due to the BWE (which is significantly aggravated by the ability 

to return goods). However, a divergent SCN with returns not allowed already faces a 

higher BWE than its serial SCN equivalent. Therefore, the transport lines of the divergent 

SCN do not face such an important increase in volume by allowing the return of goods 

since the returns are lower than in the serial SCN (see Table 4A and 4B) and the BWE 

increase is also lower (see Figures 4 and 5). In order to confirm this hypothesis, we present 

in Table 5 the increase in two-way transport volume along a single SCN link that results 

from allowing returns for the serial SCN and the divergent SCN. We show the results for 

the links comprised between the wholesaler and the external supplier, since the links 

below the wholesaler do not present notable increases. By looking at the results in Table 

5 we can confirm that in fact, the increase in two-way transport due to returns allowance 

is much lower for the divergent SCN links than for the serial SCN links (see e.g. the 

maximum increase for the serial SCN, 222.17%, and the maximum increase for the 

divergent SCN, 53.53%). 

 

Lead time c.v. 
SCN 

configuration 

Percent increase in 2-way transport volume 

Whole-Dist Dist-Fact Fact-Supp 

0.00 
Serial 9.28 41.27 104.84 

Divergent 5.49 12.44 24.98 

0.25 
Serial 14.78 58.36 138.65 

Divergent 5.88 13.65 26.65 

0.50 
Serial 28.24 100.02 222.17 

Divergent 13.98 25.96 53.53 

Table 5. Increase in two-way transport volume between node and upstream partner when returns are 

allowed vs. returns not allowed in serial and divergent SCNs. 

 

There is a further implication that returns have on transport, more specifically on transport 

capacity. While allowing returns has the negative effect of increasing the transport 

volume, decisions to restrict returns can lead to potential reductions in transport capacity 

utilization because incoming demands are likely to be ‘‘lumpy’’ (one or more zero-sized 

orders separating positive orders). Lumpy demands means that adequate transportation 

capacity must be available to service large demands, but may sit idle for periods of time. 
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Here we address this important implication and its different impact in serial and divergent 

SCNs. In Table 6 we show the zero replenishment orders (Cannella et al., 2013), which 

account for the number of periods that a company does not place any order (nor positive 

or negative), for both SCNs. When returns are allowed, zero replenishment occurs 

randomly when the desired inventory level meets the current inventory position (no order 

placed). Consequently, the zero replenishment orders are very low for both SCNs and 

their values do not appear in Table 6. When returns are not allowed, the zero 

replenishment orders experiment a high increase due to the lumpy demands. Both SCNs 

experience a fast linear increase of zero replenishment orders in the upstream direction. 

They also show higher values of this metric for higher lead time variability. Finally, as it 

could be expected, the serial SCN shows higher zero replenishment orders than the 

divergent SCN, since the compensation phenomena reduces the number of zero 

replenishment orders placed by nodes of the divergent SCN.  

A summary of findings regarding the different impact of returns on transportation 

observed in serial and divergent SCNs are: 

 The increase in transportation volume due to the two-way transport generated by 

the allowance of returns is significantly lower for the divergent SCN than for the 

serial SCN. 

 The transportation volume increases with the lead time variance in both SCNs. 

 Lumpy orders caused by the restriction of returns are lower for nodes of a 

divergent SCN than for nodes of a serial SCN.  

 In both SCNs, intermittent orders increase as the lead time variance increases. 

 

Lead time 

c.v. 

SCN 

configuration 

Zero replenishment when returns are NOT allowed  

Retailer Wholesaler Distributor Factory 

0.00 
Serial 

234 962 2011 2989 

Divergent 
231.5 411 673 1068 

0.25 
Serial 

301 1221 2442 3255 

Divergent 
296.25 526.25 860.5 1174 

0.50 
Serial 

396 1512 2732 3568 

Divergent 
445.75 899.5 1455.5 1955 

Table 6. Zero replenishment when returns are not allowed in serial and divergent SCNs. 

 

 



24 

 

7. Discussion 

This section is dedicated to discuss the findings of this work. First we discuss the 

implications for managers and decision-makers. Finally we provide guidelines for SCN 

modeling purposes. 

 

7.1. Managerial implications of returns in serial and divergent SCNs 

In this section we discuss the managerial implications derived from our research. To do 

so, we also present an ad-hoc framework (Figure 8) which indicates how the performance 

metrics (i.e. BWE, transportation capacity and lumpy orders) are modified by the specific 

configuration of the SCN (divergent vs serial) and by the returns policy (returns vs no-

returns). In this framework, arrows are oriented towards the direction of improving 

performance. The thickness of the arrows represents the magnitude of improvement. 

Finally, a two-way arrow means that there are no substantial improvements in either 

direction. The performance metrics shown in Figure 8 have several associated costs: the 

BWE is responsible of inefficiencies in terms of total costs increase, profitability 

deterioration, increased inventory holding costs, and increased cost of capital (Turrisi et 

al., 2013; Li and Liu, 2013); the transportation capacity has direct cost (trucks, ships, 

etc.); finally, the lumpy orders incur in fixed costs derived from the non-utilized 

transportation and/or production capacity. These costs are used in the following 

discussion. 

 

A trade-off between costs associated to the BWE and two-way transport and costs 

associated to lumpy orders. 

It can be noticed in Figure 8 that there is a generalized opposite trend between the 

directions of improvement of costs associated to the BWE and two-way transport 

capacity, and the directions of improvement of costs associated to lumpy orders. In 

general, due to the magnitude of the BWE, costs associated to this phenomenon should 

be higher than cost associated to lumpy orders. On the basis of this consideration, moving 

in the direction of improving BWE and two-way transport capacity would represent the 

most appropriate solution for the decision-maker. However, this condition strongly 

depends on the cost structure of a specific market sector. In fact, if fixed costs associated 

to the unused capacity for production and/or transportation of goods is very high, the 

negative impact of lumpy orders can undermine the benefit provided by the reduction of 

order variability and transportation capacity. In this context, managers may consider to 



25 

 

increase the flexibility of the transportation/production capacity (for instance by using 

third-party logistics or sub-contracting production capacity). By doing so, it can be 

obtained a reduction of fixed costs and a consequently limitation of the negative impact 

of the intermittent demand phenomenon. 

 

 

Figure 8. A summary of guidelines to improve performance. 

 

The risk of returns policy on different SCN configurations 

The adoption of a specific SCN configuration and a specific order policy are important 

managerial decisions. As shown in Figure 8, these decisions have to be based on a robust 

and context-related trade-off analysis between costs associated to the BWE and 

transportation capacity and costs associated to the lumpy demand. The risk related to the 

decision making on allowing/disallowing the return of goods policy is relevant. In fact, it 

can be noticed how the performance can strongly be modified (please see thickness of 

arrows) by shifting from the serial SCN with returns allowed to the same configuration 

with returns disallowed. On the contrary, the divergent configuration reveals a lower 

sensitivity to a modification of the returns policy. This configuration presents a higher 

resilience and robustness to the returns policy than the serial configuration. Thus, from a 

designer point of view, if we consider the returns policy as a tactical decision that may 



26 

 

even change once the SCN is operating, the divergent SCN presents a lower risk than the 

serial SCN (it is less sensitive to costs involves with this decision). The risk related to the 

decision making on allowing/disallowing return of goods is undoubtedly lowered in a 

divergent SCN. 

The above implications are exacerbated by the lead time variability. In a serial SCN, the 

lead time variability has a high impact on the variation of the BWE resultant from 

allowing/disallowing the return of goods. The BWE increases around 80% as the lead 

time variance shifts from c.v.=0.0 to c.v.=0.50 (see Figure 5). However, the same scenario 

in the divergent SCN results on a BWE increase of around 15%. Furthermore, there is 

also an increase in the two-way transport and lumpy orders caused by the lead time 

variability (see Tables 5 and 6). Consequently, we have shown evidences to consider the 

lead time variability as a key factor on decisions regarding the returns 

allowance/disallowance, and that enhance the robustness of the divergent SCN against 

the returns policy. 

 

The impact of the returns policy on re-engineering the SCN 

Now we discuss how shifting from a serial configuration to divergent configuration (and 

vice-versa) may impact the performance of the SCN under the adopted returns policy. 

The first issue to notice in Figure 8 is that changing the SCN configuration does not incur 

in costs associated to transport capacity. In fact, this cost is strictly associated to the 

returns policy. A second important implication is that, in case of returns allowed, the 

performance of the SCN (in terms of BWE and lumpy orders) is not significantly altered 

by changing the SCN configuration. Thus, in this case, the risk of the re-engineering 

process is very low. Nevertheless, if the SCN does not allow the return of goods, 

managers should consider that changing the configuration of the SCN will alter its current 

performance. More specifically, if costs derived from the lumpy orders (fixed 

production/transportation costs) are low, then changing from a divergent configuration to 

a serial configuration will improve the performance of the SCN and reduce costs. 

Otherwise, if costs derived from the lumpy orders are high, managers should balance 

these costs with those associated with the BWE in order to determine which configuration 

incur in lower costs. 

Analogously to the previous managerial implication, the lead time variability plays an 

important role (when returns are not allowed): the benefits in terms BWE reduction 
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obtained by changing from a divergent configuration to a serial configuration are higher 

as the lead time variability increases (see Figure 6). Nevertheless, we do not observe a 

clear tendency of improvement of the lumpy orders with the lead time variability, since 

the increases in both configurations are of a similar magnitude. From this viewpoint, as 

the lead time variability increases, it is more beneficial for managers of a divergent SCN 

to move to a serial configuration. Also, managers of a divergent SCN may try to reduce 

the lead time variability by implementing methodologies such as the “just-in-time” 

philosophy, obtaining performances closer to those of a serial SCN without changing the 

present configuration of the network.   

 

7.2 Modeling implications of returns in serial and divergent SCNs 

Here we discuss important modeling implications that can be derived from our findings, 

concerning the impact that two common modeling assumptions have on the accuracy of 

the results. Actually, assuming the return of goods in a SCN has several modeling 

advantages, such as the improvement of tractability by the elimination of truncated 

demand distribution (Chatfield and Pritchard, 2013). However, it has been shown that the 

return of goods has several associated costs and thus, returns are not always allowed in 

real SCNs. Also, SCNs have been often conceptualized as simple linear systems 

represented by a series of firms interacting through dyadic relationships (Cox et al., 2006). 

However, this linear conception, while it has several modeling advantages (such as 

mathematical tractability), it grossly oversimplifies and distorts the realities of modern 

SCNs (Hearnshaw and Wilson, 2013). 

In this work, an important interaction between the two aforementioned modeling 

assumptions has been found: it has been shown that the impact of the returns allowance 

assumption on the order variance amplification depends on the SCN configuration. 

Therefore, assuming that a generic SCN can be modeled by a serial SCN has important 

limitations: if the return of goods is allowed (a modeling assumption that is essentially 

universal in the BWE literature) both models (i.e. serial and divergent SCNs) fit very well 

for this particular set of modeling assumptions (i.e. other kind of input demand such as 

“shock demand” results in notable differences between both models, Dominguez et al., 

2014); however, in case of SCNs where the return of goods is not allowed, in general, the 

serial SCN model do not precisely account for the BWE found in divergent SCNs.  
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An exception occurs for divergent SCNs with very low number of echelons and low lead 

time variability: assuming that the differences in BWE between both SCNs exponentially 

increases with the number of echelons (see Figure 6), the divergent SCN can be 

approached by a serial SCN in case of low number of echelons (two or three echelons) 

and a low lead time variability (c.v.=0.0 to c.v.=0.25) with a low distortion of the results. 

There is a second modeling implication related with the impact of returns on the BWE. 

Assuming that the returns allowance assumption has always an impact on the BWE, this 

impact is much lower in the case of divergent SCNs than in serial SCNs. Thus, in case of 

modeling a divergent SCN, it would be possible to assume the return of goods in order to 

simplify the model, since this assumption would have with a lower impact on the accuracy 

of the results (at least as compared to those in serial SCNs), particularly for short SCNs 

with low lead time variability (see Figure 4). In addition, a divergent SCN with a similar 

configuration to that of this paper but with a higher number of customers by each node 

would present, due to the compensation phenomena, a higher reduction of the number of 

negative orders placed by each node and thus, it would show a less sensitivity to the 

returns allowance assumption. 

In short, it has been shown that, in addition to the distortion of the BWE caused by 

considering the two modelling assumptions independently, there is an important 

interaction between them that increases the errors introduced in the results obtained for 

the BWE, thus highlighting the importance of accurately modelling SCNs. 

 

8. Conclusion 

This research aims at analyzing how two common modelling assumptions in the BWE 

literature may impact on the accuracy of results obtained: (1) the assumption of allowing 

the return of the excess of goods and (2) the assumption of a serial configuration of the 

SCN. To do so, we perform a comparative analysis on the impact of returns on two 

different SCN configurations: a serial SCN and a divergent SCN. The SCNs have been 

modelled using a MAS-based SCN modelling tool (SCOPE) described in Dominguez and 

Framinan (2013). We quantify the BWE by measuring the total variance amplification at 

each echelon and the bullwhip slope. Aside, the negative orders placed by each node in 

both SCNs and the zero replenishment orders have been calculated to show the different 

behaviors of the analyzed chains and the different impact caused by returns in 
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transportation. A full factorial set of experiments on three experimental factors (i.e. the 

configuration of the SCN, the returns assumption and the lead time variability) has been 

designed. ANOVA has been used to statistically analyze the significance of the results 

obtained from the simulation runs. 

Our main contribution is the assessment of an important interaction between the return of 

goods and the configuration of the SCN. Indeed, the impact of returns on the BWE 

strongly depends on the configuration of the SCN. We have found that, due to the 

compensation phenomena that takes place when a company receives several uncorrelated 

demand streams (as it typically happens in divergent SCNs), the number of negative 

orders placed upstream are reduced as compared to that in a company within a serial SCN 

and thus, the divergent SCN is less affected by the returns allowance/disallowance. 

Particularly, the increase on the BWE caused by allowing the return of goods is drastically 

lower in the divergent SCN than in the serial SCN. Furthermore, the high sensitivity 

showed by the serial SCN to lead time variability on the returns issue is not observed for 

the divergent SCN, which shows a very low sensitivity to lead time variability. All this 

findings highlight the importance of testing the boundaries of modelling assumptions, 

since they may introduce important errors on the SCN model.  

Also, important managerial implications have been discussed. Particularly, we discussed 

(1) the trade-off between costs derived from BWE and transport capacity and costs 

derived from the lumpy demand caused by neglecting the return of goods; (2) the risk of 

changing the returns policy on different SCN configurations; and (3) the impact of the 

returns policy on re-engineering the SCN. 

This research has been limited to a comparison between a serial SCN and a divergent 

SCN. The results obtained could be extended by analyzing the implications of increasing 

the number of customers by each node (risk pooling) and analyzing the impact on the 

BWE and the negative orders placed by each node. Furthermore, our research is limited 

by the assuming that all demands are independent. A potential extension to this research 

is to determine how correlated demands (positive and negative correlated) may impact on 

the results obtained in this paper. Another important limitation is the absence of human 

behavior factors in our model, such as poor team decision-making, lack of sharing of 

customer demand information, and misperception of feedback, since there is a great 

interest on how human behavior, judgment, and decision-making affect SCN performance 



30 

 

(Croson and Donohue, 2006; Cantor and Macdonald, 2009; Cantor and Katok, 2012). A 

potential research proposal is to use laboratory experiments to analyze a similar problem 

to that of presented in this paper in order to assess how the mentioned human behavior 

interacts with the configuration of the SCN and returns. 
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