13 research outputs found

    Small Aircraft RF Interference Path Loss

    Get PDF
    Interference to aircraft radio receivers is an increasing concern as more portable electronic devices are allowed onboard. Interference signals are attenuated as they propagate from inside the cabin to aircraft radio antennas mounted on the outside of the aircraft. The attenuation level is referred to as the interference path loss (IPL) value. Significant published IPL data exists for transport and regional category airplanes. This report fills a void by providing data for small business/corporate and general aviation aircraft. In this effort, IPL measurements are performed on ten small aircraft of different designs and manufacturers. Multiple radio systems are addressed. Along with the typical worst-case coupling values, statistical distributions are also reported that could lead to better interference risk assessment

    Small Aircraft RF Interference Path Loss Measurements

    Get PDF
    Interference to aircraft radio receivers is an increasing concern as more portable electronic devices are allowed onboard. Interference signals are attenuated as they propagate from inside the cabin to aircraft radio antennas mounted on the outside of the aircraft. The attenuation level is referred to as the interference path loss (IPL) value. Significant published IPL data exists for transport and regional category airplanes. This report fills a void by providing data for small business/corporate and general aviation aircraft. In this effort, IPL measurements are performed on ten small aircraft of different designs and manufacturers. Multiple radio systems are addressed. Along with the typical worst-case coupling values, statistical distributions are also reported that could lead to more meaningful interference risk assessment

    Nasa/cr-2002-211941

    No full text
    The paper focuses on understanding and obtaining preliminary measurements of radiated field (RF) emissions of laptop/wireless local area network (WLAN) systems. This work is part of a larger research project to measure radiated emissions of wireless devices to provide a better understanding for potential interference with crucial aircraft avionics systems. A reverberation chamber data collection process is included, as well as recommendations for additional tests. Analysis of measurements from devices under test (DUTs) proved inconclusive for addressing potential interference issues. Continued effort is expected to result in a complete easily reproducible test protocol. The data and protocol presented here are considered preliminary

    Investigation of RF Emissions From Wireless Networks as a Threat to Avionic Systems

    No full text
    The paper focuses on understanding and obtaining preliminary measurements of radiated field (RF) emissions of laptop/wireless local area network (WLAN) systems. This work is part of a larger research project to measure radiated emissions of wireless devices to provide a better understanding for potential interference with crucial aircraft avionics systems. A reverberation chamber data collection process is included, as well as recommendations for additional tests. Analysis of measurements from devices under test (DUTs) proved inconclusive for addressing potential interference issues. Continued effort is expected to result in a complete easily reproducible test protocol. The data and protocol presented here are considered preliminary

    Portable Integrated Wireless Device Threat Assessment to Aircraft Radio Systems

    No full text
    An assessment was conducted on multiple wireless local area network (WLAN) devices using the three wireless standards for spurious radiated emissions to determine their threat to aircraft radio navigation systems. The measurement process, data and analysis are provided for devices tested using IEEE 802.11a, IEEE 802.11b, and Bluetooth as well as data from portable laptops/tablet PCs and PDAs (grouping known as PEDs). A comparison was made between wireless LAN devices and portable electronic devices. Spurious radiated emissions were investigated in the radio frequency bands for the following aircraft systems: Instrument Landing System Localizer and Glideslope, Very High Frequency (VHF) Communication, VHF Omnidirectional Range, Traffic Collision Avoidance System, Air Traffic Control Radar Beacon System, Microwave Landing System and Global Positioning System. Since several of the contiguous navigation systems were grouped under one encompassing measurement frequency band, there were five measurement frequency bands where spurious radiated emissions data were collected for the PEDs and WLAN devices. The report also provides a comparison between emissions data and regulatory emission limit

    Wireless Phone Threat Assessment and New Wireless Technology Concerns for Aircraft Navigation Radios”, NASA Report to the FAA

    No full text
    Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role. The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA’s scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA’s institutional mechanism for disseminating the results of its research and development activities. These results are published b

    Third Generation Wireless Phone Threat Assessment for Aircraft Communication and Navigation Radios

    No full text
    Radiated emissions in aircraft communication and navigation bands are measured from third generation (3G) wireless mobile phones. The two wireless technologies considered are the latest available to general consumers in the US. The measurements are conducted using reverberation chambers. The results are compared against baseline emissions from laptop computers and personal digital assistant devices that are currently allowed to operate on aircraft. Using existing interference path loss data and receivers interference threshold, a risk assessment is performed for several aircraft communication and navigation radio systems. In addition, cumulative interference effects of multiple similar devices are conservatively estimated or bounded. The effects are computed by summing the interference power from individual devices that is scaled according to the interference path loss at its location

    Wireless Phone Threat Assessment and New Wireless Technology Concerns for Aircraft Navigation Radios

    No full text
    To address the concern for cellular phone electromagnetic interference to aircraft radios, a radiated emission measurement process was developed for two dominant digital standards of wireless handsets. Spurious radiated emissions were efficiently characterized from devices tested in either a semi-anechoic or reverberation chamber, in terms of effective radiated power. Eight representative handsets (four from each digital standard) were commanded to operate while varying their radio transmitter parameters (power, modulation, etc.). This report provides a detailed description of the measurement process and resulting data, which may subsequently be used by others as a basis of consistent evaluation of other portable transmitters using a variety of wireless transmission protocols. Aircraft interference path loss and navigation radio interference threshold data from numerous reference documents, standards, and NASA partnerships were compiled. Using these data, a preliminary risk assessment is provided for wireless phone interference to aircraft Localizer, Glideslope, Very High Frequency Omni directional Range, and Global Positioning Satellite radio receivers on typical transport airplanes. The report identifies where existing data for device emissions, interference path loss, and navigation radio interference thresholds need to be extended for an accurate risk assessment for wireless transmitters in aircraft
    corecore