21 research outputs found

    Cold Dark Matter Halos Must Burn

    Full text link
    High-quality optical rotation curves for a sample of low-luminosity spirals evidence that the dark halos around galaxies are inconsistent with the output of proper CDM simulations. In fact, dark halos enveloping stellar disks are structures with approximately a constant density out to the optical edges. This is in strong disagreement with the characteristic rho(r) ~ r^(-1.5) CDM regime and severely challenges the "standard" CDM theory, also because the halo density appears to be heated up, at gross variance with the hierarchical evolution of collision-free particles.Comment: 2 figures, definitive version to appear in the Proceedings of the MPA/ESO/MPE/USM Joint Conference: "Lighthouses of the Universe: The Most Luminous Celestial Objects and their use for Cosmology", August 2001, Garching, German

    The Dark Matter Distribution in Disk Galaxies

    Get PDF
    We use high-quality optical rotation curves of 9 low-luminosity disk galaxies to obtain the velocity profile of the surrounding dark matter halos. We find that they increase linearly with radius at least out to the stellar disk edge, implying that, over the entire region where the stars reside, the density of the dark halo is constant. The properties of the halo mass structure found are similar to that claimed for a number of dwarf and low surface brightness galaxies, but provide a more substantial evidence of the discrepancy between the halo mass distribution predicted in standard cold dark matter scenario and those actually detected around galaxies. We find that the density profile proposed by Burkert (1995) reproduces the halo rotation curves, with halo central densities and core radii scaling as ρ0∝r0−2/3\rho_0 \propto r_0^{-2/3}.Comment: 8 pages, 6 figures, MNRAS accepted. New section and figures added, concerning CDM mass models. Minor changes to the rest of the pape

    The Distribution of Dark Matter in Galaxies: the Core Radius Issue

    Full text link
    I review the up-to-date status on the properties of the Dark Matter density distribution around Galaxies. The rotation curves of spirals all conform to a same Universal profile which can be uniquely decomposed as the sum of an exponential thin stellar disk and a dark halo with a flat density core. From dwarfs to giants galaxies, the halos embedding the stellar component feature a constant density region of size r0r_0 and value ρ0\rho_0, which are inversely correlated. The fine structure of dark halos in the region of the stellar disk has been derived for a number of low--luminosity disk galaxies: the halo circular velocity increases almost linearly with radius out to the edge of the stellar disk, implying, up there, an almost constant dark matter density. This sets a serious discrepancy between the cuspy density distribution predicted by N-body simulations of Λ\LambdaCDM cosmology, and those actually detected around galaxies. The small scatter around the Fundamental Plane (FP) of elliptical galaxies constraints the distribution of dark and luminous matter in these systems. The measured central velocity dispersion σ0\sigma_0 in the FP is linked to both photometric and dynamical properties of luminous and dark matter. As a consequence, the well-known features of the FP imply that, inside the effective radius ReR_e, the stellar spheroid must dominate over the dark matter, in contrast with Λ\LambdaCDM predictions.Comment: 14 pages, 10 figures, invited talk given at Beyond the Desert '03, Ringberg, 11-15 July 200

    The Intriguing Distribution of Dark Matter in Galaxies

    Get PDF
    We review the most recent evidence for the amazing properties of the density distribution of dark matter around spiral galaxies. Their rotation curves, coadded according to the galaxy luminosity, conform to an universal profile which can be represented as the sum of an exponential thin disk plus a spherical halo with a flat density core. From dwarfs to giants, these halos feature an inner constant density region. The fine structure of dark matter halos is obtained from the kinematics of a number of suitable low-luminosity disk galaxies. The halo circular velocity increases linearly with radius out to the edge of the stellar disk, implying a constant dark halo density over the entire disk region. The properties of halos around normal spirals provide substantial evidence of a discrepancy between the mass distributions predicted in the Cold Dark Matter scenario and those actually detected around galaxies.Comment: 12 pages, 7 figures. Invited lecture to the 8th Adriatic Meeting: Particle Physics in the New Millennium, Dubrovnik 4-14 Sep. 2001. To be published in the series Lecture Notes in Physics, by Springer Verla

    Phenomenological covariant approach to gravity

    Full text link
    We covariantly modify the Einstein-Hilbert action such that the modified action perturbatively resolves the flat rotational velocity curve of the spiral galaxies and gives rise to the Tully-Fisher relation, and dynamically generates the cosmological constant. This modification requires introducing just a single new universal parameter.Comment: v6: a mistake in deriving the equation of the cosmological constant corrected, refs adde

    Mirror Matter as Self Interacting Dark Matter

    Get PDF
    It has been argued that the observed core density profile of galaxies is inconsistent with having a dark matter particle that is collisionless and alternative dark matter candidates which are self interacting may explain observations better. One new class of self interacting dark matter that has been proposed in the context mirror universe models of particle physics is the mirror hydrogen atom whose stability is guaranteed by the conservation of mirror baryon number. We show that the effective transport cross section for mirror hydrogen atoms, has the right order of magnitude for solving the ``cuspy'' halo problem. Furthermore, the suppression of dissipation effects for mirror atoms due to higher mirror mass scale prevents the mirror halo matter from collapsing into a disk strengthening the argument for mirror matter as galactic dark matter.Comment: 6 pages; some references adde

    The radial profiles of the different mass components in galaxy clusters

    Full text link
    AIMS. To derive the mass profiles of the different luminous and dark components in clusters. METHODS. The cluster mass profile is determined by using the Jeans equation applied to the projected phase-space distribution of about 3000 galaxies members of 59 nearby clusters from the ESO Nearby Abell Cluster Survey. The baryonic and subhaloes mass components are determined from the galaxies' luminosity-density profiles through scaling relations between luminosities and baryonic and dark halo masses. The baryonic mass component associated to the intra-cluster gas is determined using X-ray data from ROSAT. RESULTS. The baryon-to-total mass fraction decreases from a value of 0.12 near the center, to 0.08 at the distance of 0.15 virial radii, then it increases again, to reach a value of 0.14 at the virial radius. Diffuse, cluster-scale, dark matter dominates at all radii, but its contribution to the total mass content decreases outwards to the virial radius, where the dark matter in subhaloes may contribute up to 23 %, and the baryons 14 %, of the total mass. The dark mass, and diffuse dark mass profiles are well fit by both cuspy and cored models. The subhaloes mass distribution is not fit by either model.Comment: Version accepted for publication in A&A. 10 pages, 7 figures. Footnote 1, and caption to Fig.3.correcte

    Stellar polytropes and Navarro-Frenk-White halo models: comparison with observations

    Full text link
    Motivated by the possible conflict between the Navarro-Frenk-White(NFW) model predictions for the dark matter contents of galactic systems and its correlation with baryonic surface density, we will explore an alternative paradigm for the description of dark matter halos. Such an alternative emerges from Tsallis' non-extensive thermodynamics applied to self-gravitating systems and leads to the so-called ``stellar polytrope'' (SP) model. We consider that this could be a better approach to real structures rather than the isothermal model, given the fact that the first one takes into account the non-extensivity of energy and entropy present in these type of systems characterized by long-range interactions. We compare a halo based on the Navarro-Frenk-White (NFW) and one which follows the SP description. Analyzing the dark matter contents estimated by means of global physical parameters of galactic disks, obtained from a sample of actual galaxies, with the ones of the unobserved dark matter halos, we conclude that the SP model is favored over the NFW model in such a comparison.Comment: 21 pages, 4 figures. Accepted for publication in the Journal of Cosmology and Astroparticle Physic
    corecore