2,788 research outputs found
Low-drag ground vehicle particularly suited for use in safely transporting livestock
A low-drag truck consisting of a tractor-trailer rig characterized by a rounded forebody and a protective fairing for the gap conventionally found to exist between the tractor and the trailer is described. The fairing particularly suited for establishing an attached flow of ambient air along its surfaces. The truck is also comprised of a forward facing, ram air inlet and duct and a plurality of submerged inlets and outflow ports communicating with the trailer for continuously flushing heated gases from the trailer as the rig is propelled at highway speeds
Use of a pitot probe for determining wing section drag in flight
A wake traversing probe was used to obtain section drag and wake profile data from the wing of a sailplane. The transducer sensed total pressure defect in the wake as well as freestream total pressure on both sides of the sensing element when the probe moved beyond the wake. Profiles of wake total pressure defects plotted as a function of distance above and below the trailing edge plane were averaged for calculating section drag coefficients for flights at low dynamic pressures
In-flight use of traversing boundary-layer probes
In-flight use of traversing boundary layer pitot probes with mechanical and electrical features and sample boundary layer profile
An adaptive computation mesh for the solution of singular perturbation problems
In singular perturbation problems, control of zone size variation can affect the effort required to obtain accurate, numerical solutions of finite difference equations. The mesh is generated by the solution of potential equations. Numerical results for a singular perturbation problem in two dimensions are presented. The mesh was used in calculations of resistive magnetohydrodynamic flow in two dimensions
Analysis of rocket engine injection combustion processes
Mixing methodology improvement for the JANNAF DER and CICM injection/combustion analysis computer programs was accomplished. ZOM plane prediction model development was improved for installation into the new standardized DER computer program. An intra-element mixing model developing approach was recommended for gas/liquid coaxial injection elements for possible future incorporation into the CICM computer program
AMR on the CM-2
We describe the development of a structured adaptive mesh algorithm (AMR) for the Connection Machine-2 (CM-2). We develop a data layout scheme that preserves locality even for communication between fine and coarse grids. On 8K of a 32K machine we achieve performance slightly less than 1 CPU of the Cray Y-MP. We apply our algorithm to an inviscid compressible flow problem
Local skin friction coefficients and boundary layer profiles obtained in flight from the XB-70-1 airplane at Mach numbers up to 2.5
Boundary-layer and local friction data for Mach numbers up to 2.5 and Reynolds numbers up to 3.6 x 10 to the 8th power were obtained in flight at three locations on the XB-70-1 airplane: the lower forward fuselage centerline (nose), the upper rear fuselage centerline, and the upper surface of the right wing. Local skin friction coefficients were derived at each location by using (1) a skin friction force balance, (2) a Preston probe, and (3) an adaptation of Clauser's method which derives skin friction from the rake velocity profile. These three techniques provided consistent results that agreed well with the von Karman-Schoenherr relationship for flow conditions that are quasi-two-dimensional. At the lower angles of attack, the nose-boom and flow-direction vanes are believed to have caused the momentum thickness at the nose to be larger than at the higher angles of attack. The boundary-layer data and local skin friction coefficients are tabulated. The wind-tunnel-model surface-pressure distribution ahead of the three locations and the flight surface-pressure distribution ahead of the wing location are included
Drag reduction obtained by rounding vertical corners on a box-shaped ground vehicle
A box-shaped ground vehicle was used to simulate the aerodynamic drag of delivery vans, trucks, and motor homes. A coast-down method was used to define the drag of this vehicle in a configuration with all square corners and a modified configuration with the four vertical corners rounded. The tests ranged in velocity from 30 miles per hour to 65 miles per hour, and Reynolds numbers ranged from 4.4 x 1,000,000 to 1.0 x 10 to the 7th power based on vehicle length. The modified configuration showed a reduction in aerodynamic drag of about 40 percent as compared to the square cornered configuration
Traversing probe Patent
Flow meter for measuring stagnation pressure in boundary layer around high speed flight vehicl
- …