1,363 research outputs found

    In-flight flow visualization results from the X-29A aircraft at high angles of attack

    Get PDF
    Flow visualization techniques were used on the X-29A aircraft at high angles of attack to study the vortical flow off the forebody and the surface flow on the wing and tail. The forebody vortex system was studied because asymmetries in the vortex system were suspected of inducing uncommanded yawing moments at zero sideslip. Smoke enabled visualization of the vortex system and correlation of its orientation with flight yawing moment data. Good agreement was found between vortex system asymmetries and the occurrence of yawing moments. Surface flow on the forward-swept wing of the X-29A was studied using tufts and flow cones. As angle of attack increased, separated flow initiated at the root and spread outboard encompassing the full wing by 30 deg angle of attack. In general, the progression of the separated flow correlated well with subscale model lift data. Surface flow on the vertical tail was also studied using tufts and flow cones. As angle of attack increased, separated flow initiated at the root and spread upward. The area of separated flow on the vertical tail at angles of attack greater than 20 deg correlated well with the marked decrease in aircraft directional stability

    Genetic and environmental influences on eating behavior - a study of twin pairs reared apart or reared together

    Get PDF
    This study examined the relative influence of genetic versus environmental factors on specific aspects of eating behavior. Adult monozygotic twins (22 pairs and 3 singleton reared apart, 38 pairs and 9 singleton reared together, age 18-76 years, BMI 17-43 kg/m2) completed the Three Factor Eating Questionnaire. Genetic and environmental variance components were determined for the three eating behavior constructs and their subscales using model-fitting univariate and multivariate analyses. Unique environmental factors had a substantial influence on all eating behavior variables (explaining 45-71% of variance), and most strongly influenced external locus for hunger and strategic dieting behavior of restraint (explaining 71% and 69% of variance, respectively). Genetic factors had a statistically significant influence on only 4 variables: restraint, emotional susceptibility to disinhibition, situational susceptibility to disinhibition, and internal locus for hunger (heritabilities were 52%, 55%, 38% and 50%, respectively). Common environmental factors did not statistically significantly influence any variable assessed in this study. In addition, multivariate analyses showed that disinhibition and hunger share a common influence, while restraint appears to be a distinct construct. These findings suggest that the majority of variation in eating behavior variables is associated with unique environmental factors, and highlights the importance of the environment in facilitating specific eating behaviors that may promote excess weight gain.R01 AR046124 - NIAMS NIH HHS; R01 MH065322 - NIMH NIH HHS; T32 HL069772 - NHLBI NIH HHS; R37 DA018673 - NIDA NIH HHS; R01 DK073321 - NIDDK NIH HHS; R01 DA018673 - NIDA NIH HH

    Atmospheric Variability Of Methyl Chloride During the Last 300 Years From an Antarctic Ice Core and Firn Air

    Get PDF
    Measurements of methyl chloride (CH3Cl) in Antarctic polar ice and firn air are used to describe the variability of atmospheric CH3Cl during the past 300 years. Firn air results from South Pole and Siple Dome suggest that the atmospheric abundance of CH3Cl increased by about 10% in the 50 years prior to 1990. Ice core measurements from Siple Dome provide evidence for a cyclic natural variability on the order of 10%, with a period of about 110 years in phase with the 20th century rise inferred from firn air. Thus, the CH3Cl increase measured in firn air may largely be a result of natural processes, which may continue to affect the atmospheric CH3Cl burden during the 21st century

    Estimation of bubble-mediated air–sea gas exchange from concurrent DMS and CO2 transfer velocities at intermediate–high wind speeds

    Get PDF
    Simultaneous air–sea fluxes and concentration differences of dimethylsulfide (DMS) and carbon dioxide (CO2) were measured during a summertime North Atlantic cruise in 2011. This data set reveals significant differences between the gas transfer velocities of these two gases (Δkw) over a range of wind speeds up to 21 m s−1. These differences occur at and above the approximate wind speed threshold when waves begin breaking. Whitecap fraction (a proxy for bubbles) was also measured and has a positive relationship with Δkw, consistent with enhanced bubble-mediated transfer of the less soluble CO2 relative to that of the more soluble DMS. However, the correlation of Δkw with whitecap fraction is no stronger than with wind speed. Models used to estimate bubble-mediated transfer from in situ whitecap fraction underpredict the observations, particularly at intermediate wind speeds. Examining the differences between gas transfer velocities of gases with different solubilities is a useful way to detect the impact of bubble-mediated exchange. More simultaneous gas transfer measurements of different solubility gases across a wide range of oceanic conditions are needed to understand the factors controlling the magnitude and scaling of bubble-mediated gas exchange

    Modeling the dynamics of glacial cycles

    Full text link
    This article is concerned with the dynamics of glacial cycles observed in the geological record of the Pleistocene Epoch. It focuses on a conceptual model proposed by Maasch and Saltzman [J. Geophys. Res.,95, D2 (1990), pp. 1955-1963], which is based on physical arguments and emphasizes the role of atmospheric CO2 in the generation and persistence of periodic orbits (limit cycles). The model consists of three ordinary differential equations with four parameters for the anomalies of the total global ice mass, the atmospheric CO2 concentration, and the volume of the North Atlantic Deep Water (NADW). In this article, it is shown that a simplified two-dimensional symmetric version displays many of the essential features of the full model, including equilibrium states, limit cycles, their basic bifurcations, and a Bogdanov-Takens point that serves as an organizing center for the local and global dynamics. Also, symmetry breaking splits the Bogdanov-Takens point into two, with different local dynamics in their neighborhoods

    Lorenz-like systems and classical dynamical equations with memory forcing: a new point of view for singling out the origin of chaos

    Full text link
    A novel view for the emergence of chaos in Lorenz-like systems is presented. For such purpose, the Lorenz problem is reformulated in a classical mechanical form and it turns out to be equivalent to the problem of a damped and forced one dimensional motion of a particle in a two-well potential, with a forcing term depending on the ``memory'' of the particle past motion. The dynamics of the original Lorenz system in the new particle phase space can then be rewritten in terms of an one-dimensional first-exit-time problem. The emergence of chaos turns out to be due to the discontinuous solutions of the transcendental equation ruling the time for the particle to cross the intermediate potential wall. The whole problem is tackled analytically deriving a piecewise linearized Lorenz-like system which preserves all the essential properties of the original model.Comment: 48 pages, 25 figure

    How Many Lymph Nodes Are Enough? Assessing the Adequacy of Lymph Node Yield for Staging in Favorable Histology Wilms Tumor

    Get PDF
    © 2019 Elsevier Inc. Purpose: Current investigational priorities in the treatment of favorable histology Wilms tumor (FHWT) center on accurate staging and risk-stratification. The extent of lymph node (LN) sampling has not been clearly defined; its importance cannot be overstated as it guides adjuvant therapy. The identification of a minimum LN yield to minimize the risk of harboring occult metastatic disease could help development of surgical guidelines. This study focuses on using the beta-binomial distribution to estimate the risk of occult metastatic disease in patients with FHWT. Materials & methods: The National Cancer Database was queried for patients with unilateral FHWT from 2004 to 2013. Data were used to characterize nodal positivity for patients who underwent surgery and had ≥ 1 positive LN and ≥ 2 LNs examined. The probability of missing a positive LN (i.e., false negative) for a given LN yield was calculated using an empirical estimation and the beta-binomial model. Patients were then stratified by tumor size. Results: 422 patients met study criteria. To limit the chance of missing a positive LN to ≤ 10%, the empirical estimation and beta-binomial model estimated that 6 and 10 LNs needed to be sampled, respectively. Tumor size did not influence the result. Internal validation showed little variation to maintain a false negative rate ≤ 10%. Conclusions: Using mathematical modeling, it appears that the desired LN yield in FHWT to reduce the risk of false-negative LN sampling to ≤ 10% is between 6 and 10. The current analysis represents an objective attempt to determine the desired surgical approach to LN sampling to accurately stage patients with FHWT. Level of evidence: I

    Obliquity pacing of the late Pleistocene glacial terminations

    Get PDF
    Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 434 (2005): 491-494, doi:10.1038/nature03401.The timing of glacial/interglacial cycles at intervals of about 100,000 yr (100 kyr) is commonly attributed to control by Earth orbital configuration variations. This “pacemaker” hypothesis has inspired many models, variously depending upon Earth obliquity, orbital eccentricity, and precessional fluctuations, with the latter usually emphasized. A contrasting hypothesis is that glacial cycles arise primarily because of random internal climate variability. Progress requires distinguishing between the more than 30 proposed models of the late Pleistocene glacial variations. Here we present a formal test of the pacemaker hypothesis, focusing on the rapid deglaciation events known as terminations. The null hypothesis that glacial terminations are independent of obliquity can be rejected at the 5% significance level. In contrast, for eccentricity and precession, the corresponding null-hypotheses cannot be rejected. The simplest inference, consistent with the observations, is that ice-sheets terminate every second (80 kyr) or third (120 kyr) obliquity cycle — at times of high obliquity — and similar to the original Milankovitch assumption. Hypotheses not accounting for the obliquity pacing are unlikely to be correct. Both stochastic and deterministic variants of a simple obliquity-paced model describe the observations.PH is supported by the NOAA Postdoctoral Program in Climate and Global Change and CW in part by the National Ocean Partnership Program (ECCO)
    corecore