231 research outputs found

    The AGRHYMET data communications project

    Get PDF
    The U.S. Geological Survey (USGS) and the U.S. Agency for International Development (USAID) are providing technical assistance to the AGRHYMET program in West Africa. AGRHYMET staff use remote sensing technology to produce satellite image maps of the Sahel region of West Africa. These image maps may show vegetation greenness, sea surface temperatures, or processed weather satellite imagery. The image maps must be distributed from the AGRHYMET Regional Center in Niger to national AGRHYMET centers in the member countries of Burkina Faso, Cape Verde, Chad, Gambia, Guinea-Bissau, Mali, Mauritania, Niger, and Senegal. After consideration of a number of land- and space-based solutions for image map distribution, the best solution was determined to be use of International Maritime Satellite Organization (INMARSAT) land-based terminals. In April 1992, a field test and proof-of-concept demonstration using land-mobile terminals produced favorable results. The USGS and USAID are setting up a wide area network using INMARSAT terminals to link the AGRHYMET sites for image data transfer. The system is in the procurement and installation phase and initial opening capability may be operational for the 1993 growing season, starting in May 1993

    Crucial Role of Central Nervous System as a Viral Anatomical Compartment for HIV-1 Infection

    Get PDF
    The chronic infection established by the human immunodeficiency virus 1 (HIV-1) produces serious CD4+ T cell immunodeficiency despite the decrease in HIV-1 ribonucleic acid (RNA) levels and the raised life expectancy of people living with HIV-1 (PLWH) through treatment with combined antiretroviral therapies (cART). HIV-1 enters the central nervous system (CNS), where perivascular macrophages and microglia are infected. Serious neurodegenerative symptoms related to HIV-associated neurocognitive disorders (HAND) are produced by infection of the CNS. Despite advances in the treatment of this infection, HAND significantly contribute to morbidity and mortality globally. The pathogenesis and the role of inflammation in HAND are still incompletely understood. Principally, growing evidence shows that the CNS is an anatomical reservoir for viral infection and replication, and that its compartmentalization can trigger the evolution of neurological damage and thus make virus eradication more difficult. In this review, important concepts for understanding HAND and neuropathogenesis as well as the viral proteins involved in the CNS as an anatomical reservoir for HIV infection are discussed. In addition, an overview of the recent advancements towards therapeutic strategies for the treatment of HAND is presented. Further neurological research is needed to address neurodegenerative difficulties in people living with HIV, specifically regarding CNS viral reservoirs and their effects on eradication

    Reactivation of hepatitis B virus with immune-escape mutations after ocrelizumab treatment for multiple sclerosis

    Get PDF
    Ocrelizumab is an anti-CD20 monoclonal antibody for the treatment of multiple sclerosis (MS) that is closely related to rituximab. We describe a case of hepatitis B virus (HBV) reactivation in an MS patient with resolved HBV infection receiving ocrelizumab. HBV reactivation was monitored with HBV-DNA and HBV surface antigen periodic assessment. Anti-HBV treatment with entecavir was started after HBV-DNA detection. Ocrelizumab can reactivate viral replication in patients with resolved HBV infection. HBV reactivation monitoring seems an effective and safe option for the management of these patients. More studies are needed to assess the optimal management of HBV reactivation in MS patients on ocrelizumab treatment

    Hepatitis B virus DNA integration as a novel biomarker of hepatitis B virus-mediated pathogenetic properties and a barrier to the current strategies for hepatitis B virus cure.

    Get PDF
    Chronic infection with Hepatitis B Virus (HBV) is a major cause of liver-related morbidity and mortality worldwide. HBV-DNA integration into the human genome is recognized as a frequent event occurring during the early phases of HBV infection and characterizing the entire course of HBV natural history. The development of refined molecular biology technologies sheds new light on the functional implications of HBV-DNA integration into the human genome, including its role in the progression of HBV-related pathogenesis and in triggering the establishment of pro-oncogenic mechanisms, promoting the development of hepatocellular carcinoma. The present review provides an updated and comprehensive overview of the current body of knowledge on HBV-DNA integration, focusing on the molecular mechanisms underlying HBV-DNA integration and its occurrence throughout the different phases characterizing the natural history of HBV infection. Furthermore, here we discuss the main clinical implications of HBV integration as a biomarker of HBV-related pathogenesis, particularly in reference to hepatocarcinogenesis, and how integration may act as a barrier to the achievement of HBV cure with current and novel antiviral therapies. Overall, a more refined insight into the mechanisms and functionality of HBV integration is paramount, since it can potentially inform the design of ad hoc diagnostic tools with the ability to reveal HBV integration events perturbating relevant intracellular pathways and for identifying novel therapeutic strategies targeting alterations directly related to HBV integration

    Successful switch to tenofovir after suboptimal response to entecavir in an immunocompromised patient with chronic hepatitis B and without genotypic hepatitis B virus resistance

    Get PDF
    We report a case of an immunocompromised patient affected by chronic hepatitis B virus (HBV) with high basal HBV viremia (>8 log(10) IU/ml) who failed an entecavir regimen, despite the absence of primary or secondary drug resistance mutations. The patient achieved sustained virological success (serum HBV DNA <12 IU/ml) when tenofovir was added to the treatment. This case highlights the difficulty in choosing an optimal therapy in such specific conditions and supports the concept of tailoring therapy (including combination regimens) on the basis of the particular conditions of each individual patient

    SARS-CoV-2 variants and their relevant mutational profiles: update summer 2021

    Get PDF
    : Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic caused by it, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been undergoing a genetic diversification leading to the emergence of new variants. Nevertheless, a clear definition of the genetic signatures underlying the circulating variants is still missing. Here, we provide a comprehensive insight into mutational profiles characterizing each SARS-CoV-2 variant, focusing on spike mutations known to modulate viral infectivity and/or antigenicity. We focused on variants and on specific relevant mutations reported by GISAID, Nextstrain, Outbreak.info, Pango, and Stanford database websites that were associated with any clinical/diagnostic impact, according to published manuscripts. Furthermore, 1,223,338 full-length high-quality SARS-CoV-2 genome sequences were retrieved from GISAID and used to accurately define the specific mutational patterns in each variant. Finally, mutations were mapped on the three-dimensional structure of the SARS-CoV-2 spike protein to assess their localization in the different spike domains. Overall, this review sheds light and assists in defining the genetic signatures characterizing the currently circulating variants and their clinical relevance. IMPORTANCE Since the emergence of SARS-CoV-2, several recurrent mutations, particularly in the spike protein, arose during human-to-human transmission or spillover events between humans and animals, generating distinct worrisome variants of concern (VOCs) or of interest (VOIs), designated as such due to their clinical and diagnostic impacts. Characterizing these variants and their related mutations is important in tracking SAR-CoV-2 evolution and understanding the efficacy of vaccines and therapeutics based on monoclonal antibodies, convalescent-phase sera, and direct antivirals. Our study provides a comprehensive survey of the mutational profiles characterizing the important SARS-CoV-2 variants, focusing on spike mutations and highlighting other protein mutations

    Reactivation of hepatitis B virus with immune-escape mutations after ocrelizumab treatment for multiple sclerosis

    Get PDF
    Ocrelizumab is an anti-CD20 monoclonal antibody for the treatment of multiple sclerosis (MS) that is closely related to rituximab. We describe a case of hepatitis B virus (HBV) reactivation in an MS patient with resolved HBV infection receiving ocrelizumab. HBV reactivation was monitored with HBV-DNA and HBV surface antigen periodic assessment. Anti-HBV treatment with entecavir was started after HBV-DNA detection. Ocrelizumab can reactivate viral replication in patients with resolved HBV infection. HBV reactivation monitoring seems an effective and safe option for the management of these patients. More studies are needed to assess the optimal management of HBV reactivation in MS patients on ocrelizumab treatment

    Droplet digital PCR assay as an innovative and promising highly sensitive assay to unveil residual and cryptic HBV replication in peripheral compartment

    Get PDF
    : Droplet digital PCR is an innovative and promising approach for highly sensitive quantification of nucleic acids that is being increasingly used in the field of clinical virology, including the setting of hepatitis B virus (HBV). Here, we comprehensively report a robust and reproducible ddPCR assay for the highly sensitive quantification of serum HBV-DNA. The assay showed a limit of detection of 4 copies/ml (&lt;1IU/ml) by Probit analysis, showed a good linearity (R2&nbsp;=&nbsp;0.94) and a high intra- and inter-run reproducibility with differences between the values obtained in the same run or in two independent runs never exceeding 0.14logcopies/mL and 0.21logcopies/mL, respectively. By analysing serum samples from chronically HBV infected patients (mostly under antiviral treatment), ddPCR successfully quantified serum HBV-DNA in 89.8% of patients with detectable serum HBV-DNA&nbsp;&lt;&nbsp;20&nbsp;IU/mL [equivalent to &lt;112copies/ml] by classical Real-Time PCR assay, with a median (IQR) of 8(5-14)IU/mL [45(28-78)copies/ml], and in 66.7% of patients with undetectable serum HBV-DNA, with a median (IQR) of 5(4-9)IU/mL [28(20-50)copies/ml]. Similarly, by analysing serum samples from patients with a serological profile compatible with occult HBV infection (anti-HBc+/HBsAg-), ddPCR successfully quantified serum HBV-DNA in 40% of patients with a median (IQR) value of 1(1-2)IU/mL [5(5-11)copies/ml], in line with the extremely limited viral replication typically observed in occult HBV infection. Overall, the availability of assays for the highly sensitive quantification of serum HBV-DNA can provide an added value in optimizing the diagnosis of occult hepatitis B infection, improving the therapeutic management of chronically HBV infected patients, also in the light of innovative drugs (upcoming in clinical practise) aimed at achieving HBV functional cure

    HDV can constrain HBV genetic evolution in hbsag: Implications for the identification of innovative pharmacological targets

    Get PDF
    Chronic HBV + HDV infection is associated with greater risk of liver fibrosis, earlier hepatic decompensation, and liver cirrhosis hepatocellular carcinoma compared to HBV mono-infection. However, to-date no direct anti-HDV drugs are available in clinical practice. Here, we identified conserved and variable regions in HBsAg and HDAg domains in HBV + HDV infection, a critical finding for the design of innovative therapeutic agents. The extent of amino-acid variability was measured by Shannon-Entropy (Sn) in HBsAg genotype-D sequences from 31 HBV + HDV infected and 62 HBV mono-infected patients (comparable for demographics and virological-parameters), and in 47 HDAg genotype-1 sequences. Positions with Sn = 0 were defined as conserved. The percentage of conserved HBsAg-positions was significantly higher in HBV + HDV infection than HBV mono-infection (p = 0.001). Results were confirmed after stratification for HBeAg-status and patients’ age. A Sn = 0 at specific positions in the C-terminus HBsAg were correlated with higher HDV-RNA, suggesting that conservation of these positions can preserve HDV-fitness. Conversely, HDAg was characterized by a lower percentage of conserved-residues than HBsAg (p < 0.001), indicating higher functional plasticity. Furthermore, specific HDAg-mutations were significantly correlated with higher HDV-RNA, suggesting a role in conferring HDV replicative-advantage. Among HDAg-domains, only the virus-assembly signal exhibited a high genetic conservation (75% of conserved-residues). In conclusion, HDV can constrain HBsAg genetic evolution to preserve its fitness. The identification of conserved regions in HDAg poses the basis for designing innovative targets against HDV-infection

    Update on SARS-CoV-2 Omicron Variant of Concern and Its Peculiar Mutational Profile

    Get PDF
    The process of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genetic diversification is still ongoing and has very recently led to the emergence of a new variant of concern (VOC), defined as Omicron or B.1.1.529. Omicron VOC is the most divergent variant identified so far and has generated immediate concern for its potential capability to increase SARS-CoV-2 transmissibility and, more worryingly, to escape therapeutic and vaccine-induced antibodies. Nevertheless, a clear definition of the Omicron VOC mutational spectrum is still missing. Herein, we provide a comprehensive definition and functional characterization (in terms of infectivity and/or antigenicity) of mutations characterizing the Omicron VOC. In particular, 887,475 SARS-CoV-2 Omicron VOC whole-genome sequences were retrieved from the GISAID database and used to precisely define its specific patterns of mutations across the different viral proteins. In addition, the functional characterization of Omicron VOC spike mutations was finely discussed according to published manuscripts. Lastly, residues characterizing the Omicron VOC and the previous four VOCs (Alpha, Beta, Gamma, and Delta) were mapped on the three-dimensional structure of the SARS-CoV-2 spike protein to assess their localization in the different spike domains. Overall, our study will assist with deciphering the Omicron VOC mutational profile and will shed more light on its clinical implications. This is critical considering that Omicron VOC is currently the predominant variant worldwide. IMPORTANCE The Omicron variant of concern (VOC) has a peculiar spectrum of mutations characterized by the acquisition of mutations or deletions rarely detected in previously identified variants, particularly in the spike glycoprotein. Such mutations, mostly residing in the receptor-binding domain, could play a pivotal role in enhancing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity (by increasing binding affinity for ACE2), jeopardizing spike recognition by therapeutic and vaccine-induced antibodies and causing diagnostic assay failure. To our knowledge, this is one of the first exhaustive descriptions of newly emerged mutations underlying the Omicron VOC and its biological and clinical implications
    • …
    corecore