2,082 research outputs found

    Production of Long-Lived Ultracold Li2 Molecules from a Fermi gas

    Get PDF
    We create weakly-bound Li2 molecules from a degenerate two component Fermi gas by sweeping a magnetic field across a Feshbach resonance. The atom-molecule transfer efficiency can reach 85% and is studied as a function of magnetic field and initial temperature. The bosonic molecules remain trapped for 0.5 s and their temperature is within a factor of 2 from the Bose-Einstein condensation temperature. A thermodynamical model reproduces qualitatively the experimental findings

    A smoothing monotonic convergent optimal control algorithm for NMR pulse sequence design

    Full text link
    The past decade has demonstrated increasing interests in using optimal control based methods within coherent quantum controllable systems. The versatility of such methods has been demonstrated with particular elegance within nuclear magnetic resonance (NMR) where natural separation between coherent and dissipative spin dynamics processes has enabled coherent quantum control over long periods of time to shape the experiment to almost ideal adoption to the spin system and external manipulations. This has led to new design principles as well as powerful new experimental methods within magnetic resonance imaging, liquid-state and solid-state NMR spectroscopy. For this development to continue and expand, it is crucially important to constantly improve the underlying numerical algorithms to provide numerical solutions which are optimally compatible with implementation on current instrumentation and at same time are numerically stable and offer fast monotonic convergence towards the target. Addressing such aims, we here present a smoothing monotonically convergent algorithm for pulse sequence design in magnetic resonance which with improved optimization stability lead to smooth pulse sequence easier to implement experimentally and potentially understand within the analytical framework of modern NMR spectroscopy

    Measurement of interaction energy near a Feshbach resonance in a 6Li Fermi gas

    Get PDF
    We investigate the strongly interacting regime in an optically trapped 6^6Li Fermi mixture near a Feshbach resonance. The resonance is found at 800(40)800(40) G in good agreement with theory. Anisotropic expansion of the gas is interpreted by collisional hydrodynamics. We observe an unexpected and large shift (8080 G) between the resonance peak and both the maximum of atom loss and the change of sign of the interaction energy.Comment: 4 pages, 4 figure

    Photoassociative creation of ultracold heteronuclear 6Li40K* molecules

    Full text link
    We investigate the formation of weakly bound, electronically excited, heteronuclear 6Li40K* molecules by single-photon photoassociation in a magneto-optical trap. We performed trap loss spectroscopy within a range of 325 GHz below the Li(2S_(1/2))+K(4P_(3/2)) and Li(2S_(1/2))+K(4P_(1/2)) asymptotic states and observed more than 60 resonances, which we identify as rovibrational levels of 7 of 8 attractive long-range molecular potentials. The long-range dispersion coefficients and rotational constants are derived. We find large molecule formation rates of up to ~3.5x10^7s^(-1), which are shown to be comparable to those for homonuclear 40K_2*. Using a theoretical model we infer decay rates to the deeply bound electronic ground-state vibrational level X^1\Sigma^+(v'=3) of ~5x10^4s^(-1). Our results pave the way for the production of ultracold bosonic ground-state 6Li40K molecules which exhibit a large intrinsic permanent electric dipole moment.Comment: 6 pages, 4 figures, submitted to EP

    The equation of state of ultracold Bose and Fermi gases: a few examples

    Full text link
    We describe a powerful method for determining the equation of state of an ultracold gas from in situ images. The method provides a measurement of the local pressure of an harmonically trapped gas and we give several applications to Bose and Fermi gases. We obtain the grand-canonical equation of state of a spin-balanced Fermi gas with resonant interactions as a function of temperature. We compare our equation of state with an equation of state measured by the Tokyo group, that reveals a significant difference in the high-temperature regime. The normal phase, at low temperature, is well described by a Landau Fermi liquid model, and we observe a clear thermodynamic signature of the superfluid transition. In a second part we apply the same procedure to Bose gases. From a single image of a quasi ideal Bose gas we determine the equation of state from the classical to the condensed regime. Finally the method is applied to a Bose gas in a 3D optical lattice in the Mott insulator regime. Our equation of state directly reveals the Mott insulator behavior and is suited to investigate finite-temperature effects.Comment: 14 pages, 6 figure

    Radiative pion capture by a nucleon

    Get PDF
    The differential cross sections for πpγn\pi^- p \to \gamma n and π+nγp\pi^+ n \to \gamma p are computed up to O(p3)O(p^3) in heavy baryon chiral perturbation theory (HBChPT). The expressions at O(p)O(p) and O(p2)O(p^2) have no free parameters. There are three unknown parameters at O(p3)O(p^3), low energy constants of the HBChPT Lagrangian, which are determined by fitting to experimental data. Two acceptable fits are obtained, which can be separated by comparing with earlier dispersion relation calculations of the inverse process. Expressions for the multipoles, with emphasis on the p-wave multipoles, are obtained and evaluated at threshold. Generally the results obtained from the best of the two fits are in good agreement with the dispersion relation predictions.Comment: 24 pages, Latex, using RevTe

    Upper bounds on the density of states of single Landau levels broadened by Gaussian random potentials

    Full text link
    We study a non-relativistic charged particle on the Euclidean plane R^2 subject to a perpendicular constant magnetic field and an R^2-homogeneous random potential in the approximation that the corresponding random Landau Hamiltonian on the Hilbert space L^2(R^2) is restricted to the eigenspace of a single but arbitrary Landau level. For a wide class of Gaussian random potentials we rigorously prove that the associated restricted integrated density of states is absolutely continuous with respect to the Lebesgue measure. We construct explicit upper bounds on the resulting derivative, the restricted density of states. As a consequence, any given energy is seen to be almost surely not an eigenvalue of the restricted random Landau Hamiltonian.Comment: 16 pages, to appear in "Journal of Mathematical Physics

    Bosons and Fermions near Feshbach resonances

    Full text link
    Near Feshbach resonances, na31n|a|^3\gg 1, systems of Bose and Fermi particles become strongly interacting/dense. In this unitary limit both bosons and fermions have very different properties than in a dilute gas, e.g., the energy per particle approach a value 2n2/3/m\hbar^2n^{2/3}/m times an universal many-body constant. Calculations based upon an approximate Jastrow wave function can quantitatively describe recent measurements of trapped Bose and Fermi atoms near Feshbach resonances. The pairing gap between attractive fermions also scales as Δ2n2/3/m\Delta\sim\hbar^2n^{2/3}/m near Feshbach resonances and is a large fraction of the Fermi energy - promising for observing BCS superfluidity in traps. Pairing undergoes several transitions depending on interaction strength and the number of particles in the trap and can also be compared to pairing in nuclei.Comment: Revised version extended to include recent molecular BEC-BCS result

    Cold atom Clocks and Applications

    Full text link
    This paper describes advances in microwave frequency standards using laser-cooled atoms at BNM-SYRTE. First, recent improvements of the 133^{133}Cs and 87^{87}Rb atomic fountains are described. Thanks to the routine use of a cryogenic sapphire oscillator as an ultra-stable local frequency reference, a fountain frequency instability of 1.6×1014τ1/21.6\times 10^{-14}\tau^{-1/2} where τ\tau is the measurement time in seconds is measured. The second advance is a powerful method to control the frequency shift due to cold collisions. These two advances lead to a frequency stability of 2×10162\times 10^{-16} at 50,000sforthefirsttimeforprimarystandards.Inaddition,theseclocksrealizetheSIsecondwithanaccuracyof50,000s for the first time for primary standards. In addition, these clocks realize the SI second with an accuracy of 7\times 10^{-16},oneorderofmagnitudebelowthatofuncooleddevices.Inasecondpart,wedescribetestsofpossiblevariationsoffundamentalconstantsusing, one order of magnitude below that of uncooled devices. In a second part, we describe tests of possible variations of fundamental constants using ^{87}RbandRb and ^{133}$Cs fountains. Finally we give an update on the cold atom space clock PHARAO developed in collaboration with CNES. This clock is one of the main instruments of the ACES/ESA mission which is scheduled to fly on board the International Space Station in 2008, enabling a new generation of relativity tests.Comment: 30 pages, 11 figure

    Matter wave pulses characteristics

    Full text link
    We study the properties of quantum single-particle wave pulses created by sharp-edged or apodized shutters with single or periodic openings. In particular, we examine the visibility of diffraction fringes depending on evolution time and temperature; the purity of the state depending on the opening-time window; the accuracy of a simplified description which uses ``source'' boundary conditions instead of solving an initial value problem; and the effects of apodization on the energy width.Comment: 11 pages, 11 figure
    corecore