76 research outputs found

    Integrating Maternal Depression Screening Into an Early Intervention Program: An Implementation Evaluation

    Get PDF
    Background: In all 50 states, early intervention (EI) services to improve long-term child cognitive and academic outcomes are provided to infants and toddlers with suspected or diagnosed developmental delays. When mothers of EI-enrolled children experience depressive symptoms, uptake of EI services can be compromised. Aims: The purpose of the article is to present a depressive symptom screening intervention for mothers consisting of toolkit development for EI staff and families, symptom screening for mothers and follow-up protocol. To formally evaluate the implementation of the intervention, our research team followed the consolidated framework for implementation research (CFIR). Methods: Participants were 12 EI service coordinators across two offices. Focus groups and individual interviews were used to develop the toolkit and education module. Through the five CFIR domains, we evaluated the implemented intervention in order to allow other teams to learn from our experiences. Results: Our team successfully partnered with SCs to develop the intended deliverables. Still, the SCs found it challenging to conduct the screenings and reported mixed success. Conclusions: Preparation of EI SCs to integrate mental health screenings into their existing skillsets requires a high level of support from the research team, resulting in a rich understanding of the barriers-and potential rewards-for staff and families

    Regional ecological variability and impact of the maritime fur trade on nearshore ecosystems in southern Haida Gwaii (British Columbia, Canada): evidence from stable isotope analysis of rockfish (Sebastes spp.) bone collagen

    No full text
    The maritime fur trade (1785–1840s) led to the local extinction of sea otters (Enhydra lutris) in many parts of the northeast Pacific. On the basis of studies of extant sea otter populations, it has been established that they have a disproportionate effect on nearshore ecosystems by limiting sea urchin abundance and facilitating the establishment of nearshore kelp forests; in the absence of sea otters, a local reduction in kelp-derived carbon is therefore expected. We measured the isotopic composition (δ13C and δ15N) of rockfish (Sebastes spp.) bone collagen from late Holocene archaeological sites in southern Haida Gwaii, BC, Canada, using δ13C as a proxy for kelp-derived carbon in the diet and δ15N as a proxy for trophic position. We observed significant spatial variability in rockfish kelp-derived carbon (δ13C), but not trophic level (δ15N). Kelp-derived carbon varied largely as a function of site characteristics (wave exposure), suggesting that local oceanographic conditions are important factors with respect to consumer tissue isotopic compositions. Kelp-derived carbon decreased in post-European contact rockfish relative to pre-European contact rockfish, likely as a result of the reduction of kelp forests associated with the local extirpation of sea otters. Although we detected a reduction in kelp-derived carbon in rockfish diets, we found no shift in trophic level at sites occupied following the maritime fur trade. This implies a shift in local ecosystems, and particularly in carbon sources, following the maritime fur trade, likely due to a trophic cascade resulting from the local extirpation of sea otters. Stability in rockfish trophic levels, however, implies that rockfish continued to feed at similar trophic levels, consuming prey with similar nitrogen isotopic compositions

    An association of candidate gene haplotypes and bleeding severity in von Willebrand disease (VWD) type 1 pedigrees

    No full text
    von Willebrand disease (VWD) type 1 is difficult to diagnose because of bleeding variability and low heritability of von Willebrand factor (VWF) levels. We compared a bleeding severity score and bleeding times to candidate gene haplotypes within pedigrees of 14 index cases, using a covariance components model for multivariate traits (Mendel: QTL Association). These pedigrees included 13 affected and 40 unaffected relatives, as defined by plasma ristocetin cofactor (VWF:RCo) levels. The bleeding severity score was derived from a detailed history. Donors were genotyped using a primer extension method, and 9 candidate genes were selected for analysis. VWF:RCo levels had the strongest influence on bleeding severity score and bleeding time. ITGA2 haplotype 2 (807C) and ITGA2B haplotype 1 (Ile843) were each associated with increased bleeding severity scores (P < .01 and P < .01, respectively). GP6 haplotype b (Pro219) was also associated with increased scores (P = .03) after adjustment for donor age. No association was observed with 6 other candidate genes, GP1BA, ITGB3, VWF, FGB, IL6, or TXA2R. Increased plasma VWF:Ag levels were associated with VWF haplotype 1 (\u20131793G; P = .02). These results establish that genetic differences in the adhesion receptor subunits \u3b12, \u3b1IIb, and GPVI can influence the phenotype of VWD type 1

    First in situ TOF-PET study using digital photon counters for proton range verification

    No full text
    Positron emission tomography (PET) is the imaging modality most extensively tested for treatment monitoring in particle therapy. Optimal use of PET in proton therapy requires in situ acquisition of the relatively strong 15O signal due to its relatively short half-life (∼2 min) and high oxygen content in biological tissues, enabling shorter scans that are less sensitive to biological washout. This paper presents the first performance tests of a scaled-down in situ time-of-flight (TOF) PET system based on digital photon counters (DPCs) coupled to Cerium-doped Lutetium Yttrium Silicate (LYSO:Ce) crystals, providing quantitative results representative of a dual-head tomograph that complies with spatial constraints typically encountered in clinical practice (2 × 50°, of 360°, transaxial angular acceptance). The proton-induced activity inside polymethylmethacrylate (PMMA) and polyethylene (PE) phantoms was acquired within beam pauses (in-beam) and immediately after irradiation by an actively-delivered synchrotron pencil-beam, with clinically relevant 125.67 MeV/u, 4.6 × 108 protons s-1, and 1010 total protons. 3D activity maps reconstructed with and without TOF information are compared to FLUKA simulations, demonstrating the benefit of TOF-PET to reduce limited-angle artefacts using a 382 ps full width at half maximum coincidence resolving time. The time-dependent contributions from different radionuclides to the total count-rate are investigated. We furthermore study the impact of the acquisition time window on the laterally integrated activity depth-profiles, with emphasis on 2 min acquisitions starting at different time points. The results depend on phantom composition and reflect the differences in relative contributions from the radionuclides originating from carbon and oxygen. We observe very good agreement between the shapes of the simulated and measured activity depth-profiles for post-beam protocols. However, our results also suggest that available experimental cross sections underestimate the production of 10C for in-beam acquisitions, which in PE results in an overestimation of the predicted activity range by 1.4 mm. The uncertainty in the activity range measured in PMMA using the DPC-based TOF-PET prototype setup equals 0.2 mm-0.3 mm.RST/Applied Radiation & Isotope
    • …
    corecore