5,242 research outputs found

    A quasi-pure Bose-Einstein condensate immersed in a Fermi sea

    Full text link
    We report the observation of co-existing Bose-Einstein condensate and Fermi gas in a magnetic trap. With a very small fraction of thermal atoms, the 7Li condensate is quasi-pure and in thermal contact with a 6Li Fermi gas. The lowest common temperature is 0.28 muK = 0.2(1) T_C = 0.2(1) T_F where T_C is the BEC critical temperature and T_F the Fermi temperature. Behaving as an ideal gas in the radial trap dimension, the condensate is one-dimensional.Comment: 4 pages, 5 figure

    Production of Long-Lived Ultracold Li2 Molecules from a Fermi gas

    Get PDF
    We create weakly-bound Li2 molecules from a degenerate two component Fermi gas by sweeping a magnetic field across a Feshbach resonance. The atom-molecule transfer efficiency can reach 85% and is studied as a function of magnetic field and initial temperature. The bosonic molecules remain trapped for 0.5 s and their temperature is within a factor of 2 from the Bose-Einstein condensation temperature. A thermodynamical model reproduces qualitatively the experimental findings

    Formation of a Matter-Wave Bright Soliton

    Full text link
    We report the production of matter-wave solitons in an ultracold lithium 7 gas. The effective interaction between atoms in a Bose-Einstein condensate is tuned with a Feshbach resonance from repulsive to attractive before release in a one-dimensional optical waveguide. Propagation of the soliton without dispersion over a macroscopic distance of 1.1 mm is observed. A simple theoretical model explains the stability region of the soliton. These matter-wave solitons open fascinating possibilities for future applications in coherent atom optics, atom interferometry and atom transport.Comment: 11 pages, 5 figure

    Time-resolved observation of spin-charge deconfinement in fermionic Hubbard chains

    No full text
    Elementary particles such as the electron carry several quantum numbers, for example, charge and spin. However, in an ensemble of strongly interacting particles, the emerging degrees of freedom can fundamentally differ from those of the individual constituents. Paradigmatic examples of this phenomenon are one-dimensional systems described by independent quasiparticles carrying either spin (spinon) or charge (holon). Here we report on the dynamical deconfinement of spin and charge excitations in real space following the removal of a particle in Fermi-Hubbard chains of ultracold atoms. Using space- and time-resolved quantum gas microscopy, we track the evolution of the excitations through their signatures in spin and charge correlations. By evaluating multi-point correlators, we quantify the spatial separation of the excitations in the context of fractionalization into single spinons and holons at finite temperatures

    Performance of an induction motor

    Get PDF
    Thesis (B.S.)--University of Illinois, 1902.Typescript

    Collective Oscillations of an Imbalanced Fermi Gas: Axial Compression Modes and Polaron Effective Mass

    Full text link
    We investigate the low-lying compression modes of a unitary Fermi gas with imbalanced spin populations. For low polarization, the strong coupling between the two spin components leads to a hydrodynamic behavior of the cloud. For large population imbalance we observe a decoupling of the oscillations of the two spin components, giving access to the effective mass of the Fermi polaron, a quasi-particle composed of an impurity dressed by particle-hole pair excitations in a surrounding Fermi sea. We find m∗/m=1.17(10)m^*/m=1.17(10), in agreement with the most recent theoretical predictions.Comment: 4 pages, 4 figures, submitted to PR

    Thermal and mechanical development of extremely high heat flux cooling modules based on jet array technology

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1997.Includes bibliographical references.by Rudy S. Dahbura.M.S
    • …
    corecore