2,397 research outputs found

    Collapse and revival of excitations in Bose-Einstein condensates

    Full text link
    We study the energies and decay of elementary excitations in weakly interacting Bose-Einstein condensates within a finite-temperature gapless second-order theory. The energy shifts for the high-lying collective modes turn out to be systematically negative compared with the Hartree-Fock-Bogoliubov-Popov approximation and the decay of the low-lying modes is found to exhibit collapse and revival effects. In addition, perturbation theory is used to qualitatively explain the experimentally observed Beliaev decay process of the scissors mode.Comment: 9 pages, 5 figure

    Incomplete Transition Complexity of Basic Operations on Finite Languages

    Full text link
    The state complexity of basic operations on finite languages (considering complete DFAs) has been in studied the literature. In this paper we study the incomplete (deterministic) state and transition complexity on finite languages of boolean operations, concatenation, star, and reversal. For all operations we give tight upper bounds for both description measures. We correct the published state complexity of concatenation for complete DFAs and provide a tight upper bound for the case when the right automaton is larger than the left one. For all binary operations the tightness is proved using family languages with a variable alphabet size. In general the operational complexities depend not only on the complexities of the operands but also on other refined measures.Comment: 13 page

    Spectrum of bound fermion states on vortices in 3^3He-B

    Full text link
    We study subgap spectra of fermions localized within vortex cores in 3^3He-B. We develop an analytical treatment of the low-energy states and consider the characteristic properties of fermion spectra for different types of vortices. Due to the removed spin degeneracy the spectra of all singly quantized vortices consist of two different anomalous branches crossing the Fermi level. For singular oo and uu vortices the anomalous branches are similar to the standard Caroli-de Gennes -Matricon ones and intersect the Fermi level at zero angular momentum yet with different slopes corresponding to different spin states. On the contrary the spectral branches of nonsingular vortices intersect the Fermi level at finite angular momenta which leads to the appearance of a large number of zero modes, i.e. energy states at the Fermi level. Considering the vv, ww and uvwuvw vortices with superfluid cores we show that the number of zero modes is proportional to the size of the vortex core.Comment: 6 pages, 1 figur

    Symmetric Groups and Quotient Complexity of Boolean Operations

    Full text link
    The quotient complexity of a regular language L is the number of left quotients of L, which is the same as the state complexity of L. Suppose that L and L' are binary regular languages with quotient complexities m and n, and that the transition semigroups of the minimal deterministic automata accepting L and L' are the symmetric groups S_m and S_n of degrees m and n, respectively. Denote by o any binary boolean operation that is not a constant and not a function of one argument only. For m,n >= 2 with (m,n) not in {(2,2),(3,4),(4,3),(4,4)} we prove that the quotient complexity of LoL' is mn if and only either (a) m is not equal to n or (b) m=n and the bases (ordered pairs of generators) of S_m and S_n are not conjugate. For (m,n)\in {(2,2),(3,4),(4,3),(4,4)} we give examples to show that this need not hold. In proving these results we generalize the notion of uniform minimality to direct products of automata. We also establish a non-trivial connection between complexity of boolean operations and group theory

    Additive decomposability of functions over abelian groups

    Get PDF
    Abelian groups are classified by the existence of certain additive decompositions of group-valued functions of several variables with arity gap 2.Comment: 17 page

    Research projects of STUK 2003-2005

    Get PDF

    On the effect of variable identification on the essential arity of functions

    Get PDF
    We show that every function of several variables on a finite set of k elements with n>k essential variables has a variable identification minor with at least n-k essential variables. This is a generalization of a theorem of Salomaa on the essential variables of Boolean functions. We also strengthen Salomaa's theorem by characterizing all the Boolean functions f having a variable identification minor that has just one essential variable less than f.Comment: 10 page

    Quantum circuits with uniformly controlled one-qubit gates

    Full text link
    Uniformly controlled one-qubit gates are quantum gates which can be represented as direct sums of two-dimensional unitary operators acting on a single qubit. We present a quantum gate array which implements any n-qubit gate of this type using at most 2^{n-1} - 1 controlled-NOT gates, 2^{n-1} one-qubit gates and a single diagonal n-qubit gate. The circuit is based on the so-called quantum multiplexor, for which we provide a modified construction. We illustrate the versatility of these gates by applying them to the decomposition of a general n-qubit gate and a local state preparation procedure. Moreover, we study their implementation using only nearest-neighbor gates. We give upper bounds for the one-qubit and controlled-NOT gate counts for all the aforementioned applications. In all four cases, the proposed circuit topologies either improve on or achieve the previously reported upper bounds for the gate counts. Thus, they provide the most efficient method for general gate decompositions currently known.Comment: 8 pages, 10 figures. v2 has simpler notation and sharpens some result

    Research activities of STUK 2005 – 2010

    Get PDF
    corecore