The quotient complexity of a regular language L is the number of left
quotients of L, which is the same as the state complexity of L. Suppose that L
and L' are binary regular languages with quotient complexities m and n, and
that the transition semigroups of the minimal deterministic automata accepting
L and L' are the symmetric groups S_m and S_n of degrees m and n, respectively.
Denote by o any binary boolean operation that is not a constant and not a
function of one argument only. For m,n >= 2 with (m,n) not in
{(2,2),(3,4),(4,3),(4,4)} we prove that the quotient complexity of LoL' is mn
if and only either (a) m is not equal to n or (b) m=n and the bases (ordered
pairs of generators) of S_m and S_n are not conjugate. For (m,n)\in
{(2,2),(3,4),(4,3),(4,4)} we give examples to show that this need not hold. In
proving these results we generalize the notion of uniform minimality to direct
products of automata. We also establish a non-trivial connection between
complexity of boolean operations and group theory