6 research outputs found

    PROPOLIS AND BEE VENOM IN DIABETIC WOUNDS; A POTENTIAL APPROACH THAT WARRANTS CLINICAL INVESTIGATION

    Get PDF
    Background: Wound healing in diabetes mellitus is a complex multi-stage process that requires the proper function of multiple systems. The mechanisms of impaired wound healing of diabetic wounds are still poorly understood. Therefore, various interventions are being used for wound management without great success. Bee products have various properties that make them an important addition to the diabetic wound management. Methods: This review summarized previous and recently published papers of the effects of two bee products, propolis and bee venom, on the wound healing. The main results were obtained from preclinical experimentation. Results: Diabetes mellitus compromises immune system, increases infections, impairs wound healing, and affects cells and factors involved in the wound healing. There is an increasing interest in natural products in modern medicine as part of disease management. Bee products are natural substances that others and we have explored some of their biological activities and applications in the treatment of various diseases. Some of these products are bee venom and propolis. These products have analgesic, antioxidant, antimicrobial, and anti-inflammatory properties. In addition, both propolis and bee venom contain considerable amounts of antioxidants that have a great role in accelerating wound healing. Conclusion: There is sound rationality and scientific data for using propolis and bee venom in diabetic wound healing. We believe that topical application of propolis in addition to bee venom might have a place in repairing damaged tissues and accelerating the healing of diabetic wounds

    Honey for Wound Healing, Ulcers, and Burns; Data Supporting Its Use in Clinical Practice

    No full text
    The widespread existence of unhealed wounds, ulcers, and burns has a great impact on public health and economy. Many interventions, including new medications and technologies, are being used to help achieve significant wound healing and to eliminate infections. Therefore, to find an intervention that has both therapeutic effect on the healing process and the ability to kill microbes is of great value. Honey is a natural product that has been recently introduced in modern medical practice. Honey's antibacterial properties and its effects on wound healing have been thoroughly investigated. Laboratory studies and clinical trials have shown that honey is an effective broad-spectrum antibacterial agent. This paper reviews data that support the effectiveness of natural honey in wound healing and its ability to sterilize infected wounds. Studies on the therapeutic effects of honey collected in different geographical areas on skin wounds, skin and gastric ulcers, and burns are reviewed and mechanisms of action are discussed. (Ulcers and burns are included as an example of challenging wounds.) The data show that the wound healing properties of honey include stimulation of tissue growth, enhanced epithelialization, and minimized scar formation. These effects are ascribed to honey's acidity, hydrogen peroxide content, osmotic effect, nutritional and antioxidant contents, stimulation of immunity, and to unidentified compounds. Prostaglandins and nitric oxide play a major role in inflammation, microbial killing, and the healing process. Honey was found to lower prostaglandin levels and elevate nitric oxide end products. These properties might help to explain some biological and therapeutic properties of honey, particularly as an antibacterial agent or wound healer. The data presented here demonstrate that honeys from different geographical areas have considerable therapeutic effects on chronic wounds, ulcers, and burns. The results encourage the use of honey in clinical practice as a natural and safe wound healer

    Antibiotic, Pesticide, and Microbial Contaminants of Honey: Human Health Hazards

    Get PDF
    Agricultural contamination with pesticides and antibiotics is a challenging problem that needs to be fully addressed. Bee products, such as honey, are widely consumed as food and medicine and their contamination may carry serious health hazards. Honey and other bee products are polluted by pesticides, heavy metals, bacteria and radioactive materials. Pesticide residues cause genetic mutations and cellular degradation and presence of antibiotics might increase resistant human or animal's pathogens. Many cases of infant botulisms have been attributed to contaminated honey. Honey may be very toxic when produced from certain plants. Ingestion of honey without knowing its source and safety might be problematic. Honey should be labeled to explore its origin, composition, and clear statement that it is free from contaminants. Honey that is not subjected for analysis and sterilization should not be used in infants, and should not be applied to wounds or used for medicinal purposes. This article reviews the extent and health impact of honey contamination and stresses on the introduction of a strict monitoring system and validation of acceptable minimal concentrations of pollutants or identifying maximum residue limits for bee products, in particular, honey

    Synergistic Effects of Honey and Propolis toward Drug Multi-Resistant Staphylococcus Aureus, Escherichia Coli and Candida Albicans Isolates in Single and Polymicrobial Cultures

    No full text
    Background: Propolis and honey are natural bee products with wide range of biological and medicinal properties. The study investigated antimicrobial activity of ethyl alcohol extraction of propolis collected from Saudi Arabia (EEPS) and from Egypt (EEPE), and their synergistic effect when used with honey. Single and polymicrobial cultures of antibiotic resistant human pathogens were tested.Material and methods; Staphylococcus aureus (S. aureus),), Escherichia coli (E. coli) and Candida albicans (C.albicans) were cultured in 10-100% (v/v) honey diluted in broth, or 0.08-1.0% (weight/volume) EEPS and EEPE diluted in broth. Four types of polymicrobial cultures were prepared by culturing the isolates with each other in broth (control) and broth containing various concentrations of honey or propolis. Microbial growth was assessed on solid plate media after 24 h incubation.Results; EEPS and EEPE inhibited antibiotic resistant E.coli, and S.aureus, and C.albicans in single and polymicrobial cultures. S.aureus became more susceptible when it was cultured with E.coli or C.albicans or when all cultured together. C.albicans became more susceptible when it was cultured with S.aureus or with E.coli and S. aureus together. The presence of ethyl alcohol or honey potentiated antimicrobial effect of propolis toward entire microbes tested in single or polymicrobial cultures. EEPS had lower MIC toward E.coli and C.albicans than EEPE. When propolis was mixed with honey, EEPS showed lower MIC than EEPE. In addition, honey showed lower MIC toward entire microbes when mixed with EEPS than when it was mixed with EEPE.Conclusion; 1) propolis prevents the growth of the microorganisms in single and mixed microbial cultures, and has synergistic effect when used with honey or ethyl alcohol, 2) the antimicrobial property of propolis varies with geographical origin, and 3) this study will pave the way to isolate active ingredients from honey and propolis to be further tested individually or in combination against human resistant infections.</p
    corecore