6,330 research outputs found
Energetics, skeletal dynamics and long-term predictions in Kolmogorov-Lorenz systems
We study a particular return map for a class of low dimensional chaotic
models called Kolmogorov Lorenz systems, which received an elegant general
Hamiltonian description and includes also the famous Lorenz63 case, from the
viewpoint of energy and Casimir balance. In particular it is considered in
detail a subclass of these models, precisely those obtained from the Lorenz63
by a small perturbation on the standard parameters, which includes for example
the forced Lorenz case in Ref.[6]. The paper is divided into two parts. In the
first part the extremes of the mentioned state functions are considered, which
define an invariant manifold, used to construct an appropriate Poincare surface
for our return map. From the experimental observation of the simple orbital
motion around the two unstable fixed points, together with the circumstance
that these orbits are classified by their energy or Casimir maximum, we
construct a conceptually simple skeletal dynamics valid within our sub class,
reproducing quite well the Lorenz map for Casimir. This energetic approach
sheds some light on the physical mechanism underlying regime transitions. The
second part of the paper is devoted to the investigation of a new type of
maximum energy based long term predictions, by which the knowledge of a
particular maximum energy shell amounts to the knowledge of the future
(qualitative) behaviour of the system. It is shown that, in this respect, a
local analysis of predictability is not appropriate for a complete
characterization of this behaviour. A perspective on the possible extensions of
this type of predictability analysis to more realistic cases in (geo)fluid
dynamics is discussed at the end of the paper.Comment: 21 pages, 14 figure
Shear-banding in a lyotropic lamellar phase, Part 2: Temporal fluctuations
We analyze the temporal fluctuations of the flow field associated to a
shear-induced transition in a lyotropic lamellar phase: the layering transition
of the onion texture. In the first part of this work [Salmon et al., submitted
to Phys. Rev. E], we have evidenced banded flows at the onset of this
shear-induced transition which are well accounted for by the classical picture
of shear-banding. In the present paper, we focus on the temporal fluctuations
of the flow field recorded in the coexistence domain. These striking dynamics
are very slow (100--1000s) and cannot be due to external mechanical noise.
Using velocimetry coupled to structural measurements, we show that these
fluctuations are due to a motion of the interface separating the two
differently sheared bands. Such a motion seems to be governed by the
fluctuations of , the local stress at the interface between the
two bands. Our results thus provide more evidence for the relevance of the
classical mechanical approach of shear-banding even if the mechanism leading to
the fluctuations of remains unclear
Surface compositional mapping by spectral ratioing of ERTS-1 MSS data in the Wind River Basin and Range, Wyoming
The author has identified the following significant results. ERTS data collected in August and October 1972 were processed on digital and special purpose analog recognition computers using ratio enhancement and pattern recognition. Ratios of band-averaged laboratory reflectances of some minerals and rock types known to be in the scene compared favorably with ratios derived from the data by ratio normalization procedures. A single ratio display and density slice of the visible channels of ERTS MSS data, Channel 5/Channel 4 (R5,4), separated the Triassic Chugwater formation (redbeds) from other formations present and may have enhanced iron oxide minerals present at the surface in abundance. Comparison of data sets collected over the same area at two different times of the year by digital processing indicated that spectral variation due to environmental factors was reduced by ratio processing
Slow flows of an relativistic perfect fluid in a static gravitational field
Relativistic hydrodynamics of an isentropic fluid in a gravitational field is
considered as the particular example from the family of Lagrangian
hydrodynamic-type systems which possess an infinite set of integrals of motion
due to the symmetry of Lagrangian with respect to relabeling of fluid particle
labels. Flows with fixed topology of the vorticity are investigated in
quasi-static regime, when deviations of the space-time metric and the density
of fluid from the corresponding equilibrium configuration are negligibly small.
On the base of the variational principle for frozen-in vortex lines dynamics,
the equation of motion for a thin relativistic vortex filament is derived in
the local induction approximation.Comment: 4 pages, revtex, no figur
Velocity profiles in shear-banding wormlike micelles
Using Dynamic Light Scattering in heterodyne mode, we measure velocity
profiles in a much studied system of wormlike micelles (CPCl/NaSal) known to
exhibit both shear-banding and stress plateau behavior. Our data provide
evidence for the simplest shear-banding scenario, according to which the
effective viscosity drop in the system is due to the nucleation and growth of a
highly sheared band in the gap, whose thickness linearly increases with the
imposed shear rate. We discuss various details of the velocity profiles in all
the regions of the flow curve and emphasize on the complex, non-Newtonian
nature of the flow in the highly sheared band.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let
Shear-banding in a lyotropic lamellar phase, Part 1: Time-averaged velocity profiles
Using velocity profile measurements based on dynamic light scattering and
coupled to structural and rheological measurements in a Couette cell, we
present evidences for a shear-banding scenario in the shear flow of the onion
texture of a lyotropic lamellar phase. Time-averaged measurements clearly show
the presence of structural shear-banding in the vicinity of a shear-induced
transition, associated to the nucleation and growth of a highly sheared band in
the flow. Our experiments also reveal the presence of slip at the walls of the
Couette cell. Using a simple mechanical approach, we demonstrate that our data
confirms the classical assumption of the shear-banding picture, in which the
interface between bands lies at a given stress . We also outline
the presence of large temporal fluctuations of the flow field, which are the
subject of the second part of this paper [Salmon {\it et al.}, submitted to
Phys. Rev. E]
Spin-Glass Attractor on Tridimensional Hierarchical Lattices in the Presence of an External Magnetic Field
A nearest-neighbor-interaction Ising spin glass, in the presence of an
external magnetic field, is studied on different hierarchical lattices that
approach the cubic lattice. The magnetic field is considered as uniform, or
random (following either a bimodal or a Gaussian probability distribution). In
all cases, a spin-glass attractor is found, in the plane magnetic field versus
temperature, associated with a low-temperature phase. The physical consequences
of this attractor are discussed, in view of the present scenario of the
spin-glass problem.Comment: Accepted for publication in Physical Review
Social presence in the 21st Century: an adjustment to the Community of Inquiry framework
The Community of Inquiry framework, originally proposed by Garrison, Anderson and Archer (2000) identifies teaching, social and cognitive presences as central to a successful online educational experience. This article presents the findings of a study conducted in Uruguay between 2007 and 2010. The research aimed to establish the role of cognitive, social and teaching presences in the professional development of 40 English language teachers on Continuous Professional Development (CPD) programmes delivered in blended learning settings. The findings suggest that teaching presence and cognitive presence have themselves 'become social'. The research points to social presence as a major lever for engagement, sense-making and peer support. Based on the patterns identified in the study, this article puts forward an adjustment to the Community of Inquiry framework, which shows social presence as more prominent within the teaching and cognitive constructs than the original version of the framework suggests
- âŠ