7,040 research outputs found

    Determining the metallicity of the solar envelope using seismic inversion techniques

    Full text link
    The solar metallicity issue is a long-lasting problem of astrophysics, impacting multi- ple fields and still subject to debate and uncertainties. While spectroscopy has mostly been used to determine the solar heavy elements abundance, helioseismologists at- tempted providing a seismic determination of the metallicity in the solar convective enveloppe. However, the puzzle remains since two independent groups prodived two radically different values for this crucial astrophysical parameter. We aim at provid- ing an independent seismic measurement of the solar metallicity in the convective enveloppe. Our main goal is to help provide new information to break the current stalemate amongst seismic determinations of the solar heavy element abundance. We start by presenting the kernels, the inversion technique and the target function of the inversion we have developed. We then test our approach in multiple hare-and-hounds exercises to assess its reliability and accuracy. We then apply our technique to solar data using calibrated solar models and determine an interval of seismic measurements for the solar metallicity. We show that our inversion can indeed be used to estimate the solar metallicity thanks to our hare-and-hounds exercises. However, we also show that further dependencies in the physical ingredients of solar models lead to a low accuracy. Nevertheless, using various physical ingredients for our solar models, we determine metallicity values between 0.008 and 0.014.Comment: Accepted for publication in MNRA

    Establishment Wage Differentials

    Get PDF
    Economists have long known that individual wages depend on a combination of employee and employer characteristics, as well as the interaction of the two. Although it is important to understand how employee and employer characteristics are related to wages, little is known about the magnitude and relation of these wage effects. This is primarily due to the lack of microdata which links individuals to the establishments where they work, but also due to technical difficulties associated with separating out employee and employer effects. This paper uses data from the Occupational Employment Statistics program at the Bureau of Labor Statistics that permit both of these issues to be addressed. Our results show that employer effects contribute substantially to earnings differences across individuals. We also find that establishments that pay well for one occupation also pay well for others. This paper contributes to the growing literature that analyzes firms’ compensation policies, and specifically the topic of employer effects on wages.Establishment Wage Differentials; Occupational Employment Statistics

    Are the stars of a new class of variability detected in NGC~3766 fast rotating SPB stars?

    Full text link
    A recent photometric survey in the NGC~3766 cluster led to the detection of stars presenting an unexpected variability. They lie in a region of the Hertzsprung-Russell (HR) diagram where no pulsation are theoretically expected, in between the δ\delta Scuti and slowly pulsating B (SPB) star instability domains. Their variability periods, between \sim0.1--0.7~d, are outside the expected domains of these well-known pulsators. The NCG~3766 cluster is known to host fast rotating stars. Rotation can significantly affect the pulsation properties of stars and alter their apparent luminosity through gravity darkening. Therefore we inspect if the new variable stars could correspond to fast rotating SPB stars. We carry out instability and visibility analysis of SPB pulsation modes within the frame of the traditional approximation. The effects of gravity darkening on typical SPB models are next studied. We find that at the red border of the SPB instability strip, prograde sectoral (PS) modes are preferentially excited, with periods shifted in the 0.2--0.5~d range due to the Coriolis effect. These modes are best seen when the star is seen equator-on. For such inclinations, low-mass SPB models can appear fainter due to gravity darkening and as if they were located between the δ\delta~Scuti and SPB instability strips.Comment: 6 pages, 2 figures, to appear in the proceedings of the IAU Symposium 307, New windows on massive stars: asteroseismology, interferometry, and spectropolarimetr

    The {\gamma} Dor stars as revealed by Kepler : A key to reveal deep-layer rotation in A and F stars

    Full text link
    The {\gamma} Dor pulsating stars present high-order gravity modes, which make them important targets in the intermediate-and low-mass main-sequence region of the Hertzsprung-Russell diagram. Whilst we have only access to rotation in the envelope of the Sun, the g modes of {\gamma} Dor stars can in principle deliver us constraints on the inner layers. With the puzzling discovery of unexpectedly low rotation rates in the core of red giants, the {\gamma} Dor stars appear now as unique targets to explore internal angular momentum transport in the progenitors of red giants. Yet, the {\gamma} Dor pulsations remain hard to detect from the ground for their periods are close to 1 day. While the CoRoT space mission first revealed intriguing frequency spectra, the almost uninterrupted 4-year photometry from the Kepler mission eventually shed a new light on them. It revealed regularities in the spectra, expected to bear signature of physical processes, including rotation, in the shear layers close to the convective core. We present here the first results of our effort to derive exploitable seismic diagnosis for mid- to fast rotators among {\gamma} Dor stars. We confirm their potential to explore the rotation history of this early phase of stellar evolution.Comment: 4 pages, 1 figure, proceedings of the 22nd Los Alamos Stellar Pulsation Conference, "Wide-field variability surveys: a 21st-century perspective" held in San Pedro de Atacama, Chile, Nov. 28-Dec. 2, 201

    Slow flows of an relativistic perfect fluid in a static gravitational field

    Full text link
    Relativistic hydrodynamics of an isentropic fluid in a gravitational field is considered as the particular example from the family of Lagrangian hydrodynamic-type systems which possess an infinite set of integrals of motion due to the symmetry of Lagrangian with respect to relabeling of fluid particle labels. Flows with fixed topology of the vorticity are investigated in quasi-static regime, when deviations of the space-time metric and the density of fluid from the corresponding equilibrium configuration are negligibly small. On the base of the variational principle for frozen-in vortex lines dynamics, the equation of motion for a thin relativistic vortex filament is derived in the local induction approximation.Comment: 4 pages, revtex, no figur

    Acquisition of acid vapor and aerosol concentration data for use in dry deposition studies in the South Coast Air Basin

    Get PDF
    An atmospheric monitoring network was operated throughout the South Coast Air Basin in the greater Los Angeles area during the year 1986. The primary objective of this study was to measure the spatial and temporal concentration distributions of atmospheric gas phase and particulate phase acids and bases in support of the California Air Resources Board's dry deposition research program. Gaseous pollutants measured include HNO_3, HCl, HF, HBr, formic acid, acetic acid and ammonia. The chemical composition of the airborne particulate matter complex was examined in three size ranges: fine particles (less than 2.2 μm aerodynamic diameter, AD), PM_(10) (less than 10 μm AD) and total particles (no size discrimination). Upwind of the air basin at San Nicolas Island, gas phase acids concentrations are very low: averaging 0.3 μg m^(-3) (0.1 ppb) for HNO_3, 0.8 μg m^(-3) for HCl, 0.13 μg m^(-3) for HF, and 2.6 μg m^(-3) for formic acid. Annual average HN03 concentrations ranged from 3.1 μg m^(-3) (1.2 ppb) near the Southern California coast to 6.9 μg m^(-3) (2.7 ppb) at an inland site in the San Gabriel Mountains. HCl concentrations within the South Coast Air Basin averaged from 0.8 μg m^(-3) to 1.8 μg m^(-3) during the year 1986. Long-term average HF concentrations within the air basin are very low, in the range from 0.14 to 0.22 μg m^(-3) between monitoring sites. Long-term average formic acid concentrations are lowest near the coastline (5.0 μg m^(-3) at Hawthorne), with the highest average concentrations (10.7 μg m^(-3)) observed inland at Upland. Ammonia concentrations at low elevation within the South Coast Air Basin average from 2.1 μg m^(-3) to 4.4 μg m^(-3) at all sites except Rubidoux. Rubidoux is located directly downwind of a large ammonia source created by dairy farming and other agricultural activities in the Chino area. Ammonia concentrations at Rubidoux average 30 μg m^(-3) during 1986, a factor of approximately 10 higher than elsewhere in the air basin. Annual average PM_(10) mass concentrations within the South Coast Air Basin ranged from 47.0 μg m^(-3) along the coast to 87.4 μg m^(-3) at Rubidoux, the farthest inland monitoring site. Five major aerosol components (carbonaceous material, NO_3^-, SO_4^-, NH_4^+ and soil-related material) accounted for greater than 80% of the annual average PM_(10) mass concentration at all on-land monitoring stations. A peak 24-h average PM_(10) mass concentration of 299 μg m^(-3) was observed at Rubidoux during 1986. That value is a factor of 2 higher than the federal 24-h average PM_(10) concentration standard, and a factor of 6 higher than the State of California PM_(10) standard. More than 40% of the PM_(10) aerosol mass measured at Rubidoux during that peak day event consisted of aerosol nitrates plus ammonium ion. Reaction of gaseous nitric acid to form aerosol nitrates was a major contributor to the high PM_(10) concentrations observed in the Rubidoux area near Riverside, California

    A millimeter-wave Bell Test using a ferrite parametric amplifier and a homodyne interferometer

    Get PDF
    A combined ferrite parametric amplifier and millimeter-wave homodyne interferometer are proposed as an ambient temperature Bell Test. It is shown that the non-linear magnetic susceptibility of the yttrium iron garnet (YIG) ferrite, on account of its narrow line-width Larmor precessional resonance, make it an ideal material for the creation of entangled photons. These can be measured using a homodyne interferometer, as the much larger number of thermally generated photons associated with ambient temperature emission can be screened out. The proposed architecture may enable YIG quantum technology-based sensors to be developed, mimicking in the millimeter-wave band the large number of quantum optical experiments in the near-infrared and visible regions which had been made possible by use of the nonlinear beta barium borate ferroelectric, an analogue of YIG. It is illustrated here how the YIG parametric amplifier can reproduce quantum optical Type I and Type II wave interactions, which can be used to create entangled photons in the millimeter-wave band. It is estimated that when half a cubic centimeter of YIG crystal is placed in a magnetic field of a few Tesla and pumped with 1 Watt of millimeter-wave radiation, approximately 1012 entangled millimeter-wave photon pairs per second are generated by the spin-wave interaction. This means an integration time of only a few tens of seconds is needed for a successful Bell Test. A successful demonstration of this will lead to novel architectures of entanglement-based quantum technology room temperature sensors, re-envisioning YIG as a modern quantum material
    corecore