3 research outputs found

    Utility of the Cobas® Plasma Separation Card as a Sample Collection Device for Serological and Virological Diagnosis of Hepatitis C Virus Infection

    Get PDF
    Taca de plasma sec; Hepatitis C; Targeta de separació de plasmaMancha de plasma seca; Hepatitis C; Tarjeta de separación de plasmaDried plasma spot; Hepatitis C; Plasma separation cardDiagnosis and clinical management of people infected with hepatitis C virus (HCV) relies on results from a combination of serological and virological tests. The aim of this study was to compare the performance of dried plasma spots (DPS), prepared using the cobas® Plasma Separation Card (PSC), to plasma and serum from venipuncture, for HCV diagnosis. We carried out a prospective study using DPS and paired plasma or serum samples. Serum and DPS samples were analyzed by immunoassay using Elecsys® Anti-HCV II (Roche). Plasma and DPS samples were analyzed using the cobas® HCV viral load and cobas® HCV genotyping tests (Roche). All DPS samples that had high anti-HCV antibody titers in serum were also antibody-positive, as were five of eight samples with moderate titers. Eight samples with low titers in serum were negative with DPS. Among 80 samples with plasma HCV viral loads between 61.5 and 2.2 × 108 IU/mL, 74 were RNA-positive in DPS. The mean viral load difference between plasma and DPS was 2.65 log10 IU/mL. The performance of DPS for detection of serological and virological markers of hepatitis C virus infection was comparable to that of the conventional specimen types. However, the limits of detection were higher for DPS.This work was supported by Roche and a microelimiation grant of Gilead Science (GLD19-0104)

    Opposing effects of the purinergic P2X7 receptor on seizures in neurons and microglia in male mice

    No full text
    Background: The purinergic ATP-gated P2X7 receptor (P2X7R) is increasingly recognized to contribute to pathological neuroinflammation and brain hyperexcitability. P2X7R expression has been shown to be increased in the brain, including both microglia and neurons, in experimental models of epilepsy and patients. To date, the cell type-specific downstream effects of P2X7Rs during seizures remain, however, incompletely understood. Methods: Effects of P2X7R signaling on seizures and epilepsy were analyzed in induced seizure models using male mice including the kainic acid model of status epilepticus and pentylenetetrazole model and in male and female mice in a genetic model of Dravet syndrome. RNA sequencing was used to analyze P2X7R downstream signaling during seizures. To investigate the cell type-specific role of the P2X7R during seizures and epilepsy, we generated mice lacking exon 2 of the P2rx7 gene in either microglia (P2rx7:Cx3cr1-Cre) or neurons (P2rx7:Thy-1-Cre). To investigate the protective potential of overexpressing P2X7R in GABAergic interneurons, P2X7Rs were overexpressed using adeno-associated virus transduction under the mDlx promoter. Results: RNA sequencing of hippocampal tissue from wild-type and P2X7R knock-out mice identified both glial and neuronal genes, in particular genes involved in GABAergic signaling, under the control of the P2X7R following seizures. Mice with deleted P2rx7 in microglia displayed less severe acute seizures and developed a milder form of epilepsy, and microglia displayed an anti-inflammatory molecular profile. In contrast, mice lacking P2rx7 in neurons showed a more severe seizure phenotype when compared to epileptic wild-type mice. Analysis of single-cell expression data revealed that human P2RX7 expression is elevated in the hippocampus of patients with temporal lobe epilepsy in excitatory and inhibitory neurons. Functional studies determined that GABAergic interneurons display increased responses to P2X7R activation in experimental epilepsy. Finally, we show that viral transduction of P2X7R in GABAergic interneurons protects against evoked and spontaneous seizures in experimental temporal lobe epilepsy and in mice lacking Scn1a, a model of Dravet syndrome. Conclusions: Our results suggest a dual and opposing action of P2X7R in epilepsy and suggest P2X7R overexpression in GABAergic interneurons as a novel therapeutic strategy for acquired and, possibly, genetic forms of epilepsy.European CommissionMinisterio de Ciencia e Innovación (España)Sección Deptal. de Farmacología y Toxicología (Veterinaria)Depto. de Optometría y VisiónFac. de VeterinariaFac. de Óptica y OptometríaTRUEpu
    corecore