102 research outputs found

    On the interaction between human IQGAP1 and actin

    Get PDF
    DM thanks the School of Biological Sciences, Queen’s University, Belfast for a summer studentship and EH thanks the Department of Employment and Learning, Northern Ireland for a postgraduate studentship. The work was funded in part by grants from the BBSRC (BB/D000394/1 To DJT) and by the Wellcome Trust [grant number GR06281AIA] which funded the purchase of the QStar XL mass spectrometer at the BBSRC Mass Spectrometry and Proteomics Facility, University of St Andrews and funded SLS.IQGAPs are eukaryotic proteins which integrate signals from various sources and pass these on the cytoskeleton. Understanding how they do this requires information on the interfaces between the proteins. Here, it is shown that the calponin homology domain of human IQGAP1 (CHD1) can be crosslinked with α-actin. The stoichiometry of the interaction was 1:1. A molecular model was built of the complex and associated bioinformatics analyses predicted that the interaction is likely to involve an electrostatic interaction between Lys-240 of α-actin and Glu-30 of CHD1. These residues are predicted to be accessible and are not involved in many intra-protein interactions; they are thus available for interaction with binding partners. They are both located in regions of the proteins which are predicted to be flexible and disordered; interactions between signalling molecules often involve flexible, disordered regions. The predicted binding region in CHD1 is well conserved in many eukaryotic IQGAP-like proteins. In some cases (e.g Dictyostelium discoideum and Saccharomyces cerevisiae) protein sequence conservation is weak, but molecular modelling reveals that a region of charged, polar residues in a flexible N-terminus is structurally well conserved. Therefore we conclude that the calponin homology domains of IQGAP1-like proteins interact initially through the electrostatic interaction identified here and that there may be subsequent conformational changes to form the final complex.PostprintPeer reviewe

    Contaminants in commercial preparations of ‘purified’ small leucine-rich proteoglycans may distort mechanistic studies

    Get PDF
    The authors are grateful to Genodisc (EC’s 7th Framework Programme (FP7, 2007-2013) under grant agreement no. HEALTH-F2-2008-201626) and the Orthopaedic Institute Ltd for funding.This paper reports the perplexing results that came about because of seriously impure commercially available reagents. Commercial reagents and chemicals are routinely ordered by scientists and are expected to have been rigorously assessed for their purity. Unfortunately, we found this assumption to be risky. Extensive work was carried out within our laboratory using commercially-sourced preparations of the small leucine-rich proteoglycans, decorin and biglycan, to investigate their influence on nerve cell growth. Unusual results compelled us to analyse the composition and purity of both preparations of these proteoglycans using both mass spectrometry and Western blotting, with and without various enzymatic deglycosylations. Commercial ‘decorin’ and ‘biglycan’ were found to contain a mixture of proteoglycans including not only both decorin and biglycan but also fibromodulin and aggrecan. The unexpected effects of ‘decorin’ and ‘biglycan’ on nerve cell growth could be explained by these impurities. Decorin and biglycan contain either chondroitin or dermatan sulphate glycosaminoglycan chains whilst fibromodulin only contains keratan sulphate and the large (>2,500 kDa), highly glycosylated aggrecan, contains both keratan and chondroitin sulphate. The different structure, molecular weights and composition of these impurities significantly affected our work and any conclusions that could be made. These findings beg the question as to whether scientists need to verify the purity of each commercially obtained reagent used in their experiments. The implications of these findings are vast, since the effects of these impurities may already have led to inaccurate conclusions and reports in the literature with concomitant loss of researchers’ funds and time.Publisher PDFPeer reviewe

    Reversible conjugation of a CBASS nucleotide cyclase regulates bacterial immune response to phage infection

    Get PDF
    Funding: This work was funded by a European Research Council Advanced Grant (grant number 101018608) to M.F.W. L.K. was funded by an EMBO postdoctoral fellowship (grant number ALTF 234-2022). L.G.-M. was funded by the UKRI Biotechnology and Biological Sciences Research Council (BBSRC) (grant number BB/T00875X/1).Prokaryotic antiviral defence systems are frequently toxic for host cells and stringent regulation is required to ensure survival and fitness. These systems must be readily available in case of infection but tightly controlled to prevent activation of an unnecessary cellular response. Here we investigate how the bacterial cyclic oligonucleotide-based antiphage signalling system (CBASS) uses its intrinsic protein modification system to regulate the nucleotide cyclase. By integrating a type II CBASS system from Bacillus cereus into the model organism Bacillus subtilis, we show that the protein-conjugating Cap2 (CBASS associated protein 2) enzyme links the cyclase exclusively to the conserved phage shock protein A (PspA) in the absence of phage. The cyclase–PspA conjugation is reversed by the deconjugating isopeptidase Cap3 (CBASS associated protein 3). We propose a model in which the cyclase is held in an inactive state by conjugation to PspA in the absence of phage, with conjugation released upon infection, priming the cyclase for activation.Peer reviewe

    Quantitative proteomic profiling of the rat substantia nigra places glial fibrillary acidic protein at the hub of proteins dysregulated during aging : implications for idiopathic Parkinson’s disease

    Get PDF
    This work was made possible by generous funding from the Keele University ACORN scheme and Keele University School of Medicine.There is a strong correlation between aging and onset of idiopathic Parkinson's disease, but little is known about whether cellular changes occur during normal aging that may explain this association. Here, proteomic and bioinformatic analysis was conducted on the substantia nigra (SN) of rats at four stages of life to identify and quantify protein changes throughout aging. This analysis revealed that proteins associated with cell adhesion, protein aggregation and oxidation‐reduction are dysregulated as early as middle age in rats. Glial fibrillary acidic protein (GFAP) was identified as a network hub connecting the greatest number of proteins altered during aging. Furthermore, the isoform of GFAP expressed in the SN varied throughout life. However, the expression levels of the rate‐limiting enzyme for dopamine production, tyrosine hydroxylase (TH), were maintained even in the oldest animals, despite a reduction in the number of dopamine neurons in the SN pars compact(SNc) as aging progressed. This age‐related increase in TH expression per neuron would likely to increase the vulnerability of neurons, since increased dopamine production would be an additional source of oxidative stress. This, in turn, would place a high demand on support systems from local astrocytes, which themselves show protein changes that could affect their functionality. Taken together, this study highlights key processes that are altered with age in the rat SN, each of which converges upon GFAP. These findings offer insight into the relationship between aging and increased challenges to neuronal viability, and indicate an important role for glial cells in the aging process.Publisher PDFPeer reviewe

    Characterising the HLA-I Immunopeptidome of plasma-derived extracellular vesicles in patients with melanoma

    Get PDF
    This work was funded by grants from Breast Cancer Now UK (2018JulPR1086), and the Melville Trust for the Care and Cure of Cancer UK (XCT014). We also gratefully acknowledge funding from the EPSRC via EP/L017008/1 for TEM imaging infrastructure, and EP/R023751/1 and EP/T019298/1.Extracellular vesicles (EVs) frequently express human leukocyte antigen class I (HLA-I) molecules. The immunopeptidomes presented on EV HLA-I are being mapped to provide key information on both specific cancer-related peptides, and for larger immunopeptidomic signatures associated with disease. Utilizing HLA-I immunoisolation and mass spectrometry, we characterised the HLA-I immunopeptidome of EVs derived from the melanoma cancer cell line, ESTDAB-026, and the plasma of 12 patients diagnosed with advanced stage melanoma, alongside 11 healthy controls. The EV HLA-I immunopeptidome derived from melanoma cells features T cell epitopes with known immunogenicity and peptides derived from known tumour associated antigens (TAAs). Both T cell epitopes with known immunogenicity and peptides derived from known TAAs were also identifiable in the melanoma patient samples. Patient stratification into two distinct groups with varying immunological profiles was also observed. The data obtained in this study suggests for the first time that the HLA-I immunopeptidome of EVs derived from blood may aid in the detection of important diagnostic or prognostic biomarkers and also provide new immunotherapy targets.Peer reviewe

    Investigation of the blood proteome in response to spinal cord injury in rodent models

    Get PDF
    We would like to thank the Institute of Orthopaedics and the Midlands Centre for Spinal Cord Injury (MCSI) for funding this research. This work was also supported by the Wellcome Trust [grant number 094476/Z/10/Z] which funded the purchase of the TripleTOF 5600 mass spectrometer at the BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews.Study Design: Explanatory and mechanistic study. Objective: A better understanding of the 'whole-body' response following spinal cord injury (SCI) is needed to guide future research aimed at developing novel therapeutic interventions and identifying prognostic indicators for SCI. This study aimed to characterise the blood proteome following contusion or complete SCI compared to a sham injury in rat models. Setting: United Kingdom. Methods: Pooled blood samples from one and seven days after a contusion (serum; n = 5) or from 14 days and 112 days post-complete transection SCI (plasma; n = 8) and their sham-injured counterparts were subjected to independent iTRAQ nanoflow liquid chromatography tandem mass-spectrometry proteomic analyses. Pathway analyses of the proteins that were differentially abundant between SCI and their matched sham injured counterparts were completed to indicate biological pathways that may be changed in response to SCI. Results: Eleven and 42 proteins were differentially abundant (≥±2.0 FC; p ≤ 0.05) between the contusion SCI and sham injured animals at 24 h and seven days post-injury, respectively. Seven and tweleve proteins were differentially abundant between complete and sham injured rats at 14 and 112 days post-injury, respectively. Acute-phase response signalling and Liver X Receptor/Retinoic X Receptor activation were identified as differentially regulated pathways in both models of SCI. Conclusions: We have utilised longitudinal preclinical SCI models to provide an insight into the blood proteome changes that result following SCI and to highlight a number of biological pathways of interest for future studies.Publisher PDFPeer reviewe

    Bunyamwera orthobunyavirus glycoprotein precursor is processed by cellular signal peptidase and signal peptide peptidase

    Get PDF
    This study was supported by Wellcome Trust Grant 099220/B/12/Z (to R.M.E.) and Grant 094476/Z/10/Z that funded the purchase of the TripleTOF 5600 mass spectrometer at the Biomedical Sciences Research Complex (BSRC) of University of St. Andrews.Bunyamwera virus (BUNV) is the prototype of the Orthobunyavirus genus and Bunyaviridae family that contains important human and animal pathogens. The cleavage mechanism of orthobunyavirus glycoprotein precursor (GPC) and the host proteases involved have not been clarified. Here we found that NSm and Gc contain their own internal signal peptides, which mediate the GPC cleavage by host signal peptidase and signal peptide peptidase (SPP). Furthermore, the NSm domain-I plays an important postcleavage role in cell fusion. Our data clarified the implication of host proteases in the processing of the orthobunyavirus GPC. This work identifies SPP as a potential intervention target, and the knowledge we gained will benefit preventive strategies against other orthobunyavirus infections.PostprintPeer reviewe

    Proteomic characterization of human LMNA-related congenital muscular dystrophy muscle cells

    Get PDF
    LMNA-related congenital muscular dystrophy (L-CMD) is caused by mutations in the LMNA gene, encoding lamin A/C. To further understand the molecular mechanisms of L-CMD, proteomic profiling using DIA mass spectrometry was conducted on immortalized myoblasts and myotubes from controls and L-CMD donors each harbouring a different LMNA mutation (R249W, del.32 K and L380S). Compared to controls, 124 and 228 differentially abundant proteins were detected in L-CMD myoblasts and myotubes, respectively, and were associated with enriched canonical pathways including synaptogenesis and necroptosis in myoblasts, and Huntington's disease and insulin secretion in myotubes. Abnormal nuclear morphology and reduced lamin A/C and emerin abundance was evident in all L-CMD cell lines compared to controls, while nucleoplasmic aggregation of lamin A/C was restricted to del.32 K cells, and mislocalization of emerin was restricted to R249W cells. Abnormal nuclear morphology indicates loss of nuclear lamina integrity as a common feature of L-CMD, likely rendering muscle cells vulnerable to mechanically induced stress, while differences between L-CMD cell lines in emerin and lamin A localization suggests that some molecular alterations in L-CMD are mutation specific. Nonetheless, identifying common proteomic alterations and molecular pathways across all three L-CMD lines has highlighted potential targets for the development of non-mutation specific therapies. [Abstract copyright: Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.

    Tumour-associated antigenic peptides are present in the HLA class I ligandome of cancer cell line derived extracellular vesicles

    Get PDF
    Funding: Breast Cancer Now (Grant Number(s): 2018JulPR1086), Wellcome Trust (GrantNumber(s): 105621/Z/14/Z), Melville Charitable Trust.The recent success of monoclonal antibody checkpoint inhibitor therapies that enhance the ability of CD8+ T cells to detect cancer-related antigenic peptides has refocused the need to fully understand the repertoire of peptides being presented to the immune system. Whilst the peptide ligandome presented by cell surface human leucocyte antigen class I (HLA-I) molecules on cancer cells has been studied extensively, the ligandome of extracellular vesicles (EVs) remains poorly defined. Here we report the HLA-I ligandome of both the cell surface and EVs from eight breast cancer cell lines (MCF7, MDA-MB-231, MDA-MB-361, MDA-MB-415, MDA-MB-453, HCC 1806, HCC 1395, and HCC 1954), and additionally the melanoma cell line ESTDAB-056 and the multiple myeloma line RPMI 8226. Utilising HLA-I immunoisolation and mass spectrometry, we detected a total of 6574 peptides from the cell surface and 2461 peptides from the EVs of the cell lines studied. Within the EV HLA-I ligandome, we identified 150 peptides derived from tumour associated antigenic proteins, of which 19 peptides have been shown to elicit T cell responses in previous studies. Our data thus shows the prevalence of clinically relevant tumour-associated antigenic peptides in the HLA-I ligandome presented on EV.Publisher PDFPeer reviewe
    corecore