6 research outputs found

    Vertical Artifacts in High-Resolution WorldView-2 and Worldview-3 Satellite Imagery of Aquatic Systems

    Get PDF
    Satellite image artefacts are features that appear in an image but not in the original imaged object and can negatively impact the interpretation of satellite data. Vertical artefacts are linear features oriented in the along-track direction of an image system and can present as either banding or striping; banding are features with a consistent width, and striping are features with inconsistent widths. This study used high-resolution data from DigitalGlobeʻs (now Maxar) WorldView-3 satellite collected at Lake Okeechobee, Florida (FL), on 30 August 2017. This study investigated the impact of vertical artefacts on both at-sensor radiance and a spectral index for an aquatic target as WorldView-3 was primarily designed as a land sensor. At-sensor radiance measured by six of WorldView-3ʻs eight spectral bands exhibited banding, more specifically referred to as non-uniformity, at a width corresponding to the multispectral detector sub-arrays that comprise the WorldView-3 focal plane. At-sensor radiance measured by the remaining two spectral bands, red and near-infrared (NIR) #1, exhibited striping. Striping in these spectral bands can be attributed to their time delay integration (TDI) settings at the time of image acquisition, which were optimized for land. The impact of vertical striping on a spectral index leveraging the red, red edge, and NIR spectral bands—referred to here as the NIR maximum chlorophyll index (MCINIR)—was investigated. Temporally similar imagery from the European Space Agencyʻs Sentinel-3 and Sentinel-2 satellites were used as baseline references of expected chlorophyll values across Lake Okeechobee as neither Sentinel-3 nor Sentinel-2 imagery showed striping. Striping was highly prominent in the MCINIR product generated using WorldView-3 imagery, as noise in the at-sensor radiance exceeded any signal of chlorophyll in the image. Adjusting the image acquisition parameters for future tasking of WorldView-3 or the functionally similar WorldView-2 satellite may alleviate these artefacts. To test this, an additional WorldView-3 image was acquired at Lake Okeechobee, FL, on 26 May 2021 in which the TDI settings and scan line rate were adjusted to improve the signal-to-noise ratio. While some evidence of non-uniformity remained, striping was no longer noticeable in the MCINIR product. Future image tasking over aquatic targets should employ these updated image acquisition parameters. Since the red and NIR #1 spectral bands are critical for inland and coastal water applications, archived images not collected using these updated settings may be limited in their potential for analysis of aquatic variables that require these two spectral bands to derive

    Simulated Response of St. Joseph Bay, Florida, Seagrass Meadows and Their Belowground Carbon to Anthropogenic and Climate Impacts

    Get PDF
    Seagrass meadows are degraded globally and continue to decline in areal extent due to human pressures and climate change. This study used the bio-optical model GrassLight to explore the impact of climate change and anthropogenic stressors on seagrass extent, leaf area index (LAI) and belowground organic carbon (BGC) in St. Joseph Bay, Florida, using water quality data and remotely-sensed sea surface temperature (SST) from 2002 to 2020. Model predictions were compared with satellite-derived measurements of seagrass extent and shoot density from the Landsat images for the same period. The GrassLight-derived area of potential seagrass habitat ranged from 36.2 km2 to 39.2 km2, averaging 38.0 ± 0.8 km2 compared to an observed seagrass extent of 23.0 ± 3.0 km2 derived from Landsat (range = 17.9–27.4 km2). GrassLight predicted a mean seagrass LAI of 2.7 m2 leaf m−2 seabed, compared to a mean LAI of 1.9 m2 m−2 estimated from Landsat, indicating that seagrass density in St. Joseph Bay may have been below its light-limited ecological potential. Climate and anthropogenic change simulations using GrassLight predicted the impact of changes in temperature, pH, chlorophyll a, chromophoric dissolved organic matter and turbidity on seagrass meadows. Simulations predicted a 2–8% decline in seagrass extent with rising temperatures that was offset by a 3–11% expansion in seagrass extent in response to ocean acidification when compared to present conditions. Simulations of water quality impacts showed that a doubling of turbidity would reduce seagrass extent by 18% and total leaf area by 21%. Combining climate and water quality scenarios showed that ocean acidification may increase seagrass productivity to offset the negative effects of both thermal stress and declining water quality on the seagrasses growing in St. Joseph Bay. This research highlights the importance of considering multiple limiting factors in understanding the effects of environmental change on seagrass ecosystems

    Providing a Framework for Seagrass Mapping in United States Coastal Ecosystems Using High Spatial Resolution Satellite Imagery

    Get PDF
    Seagrasses have been widely recognized for their ecosystem services, but traditional seagrass monitoring approaches emphasizing ground and aerial observations are costly, time-consuming, and lack standardization across datasets. This study leveraged satellite imagery from Maxar\u27s WorldView-2 and WorldView-3 high spatial resolution, commercial satellite platforms to provide a consistent classification approach for monitoring seagrass at eleven study areas across the continental United States, representing geographically, ecologically, and climatically diverse regions. A single satellite image was selected at each of the eleven study areas to correspond temporally to reference data representing seagrass coverage and was classified into four general classes: land, seagrass, no seagrass, and no data. Satellite-derived seagrass coverage was then compared to reference data using either balanced agreement, the Mann-Whitney U test, or the Kruskal-Wallis test, depending on the format of the reference data used for comparison. Balanced agreement ranged from 58% to 86%, with better agreement between reference- and satellite-indicated seagrass absence (specificity ranged from 88% to 100%) than between reference- and satellite-indicated seagrass presence (sensitivity ranged from 17% to 73%). Results of the Mann-Whitney U and Kruskal-Wallis tests demonstrated that satellite-indicated seagrass percentage cover had moderate to large correlations with reference-indicated seagrass percentage cover, indicative of moderate to strong agreement between datasets. Satellite classification performed best in areas of dense, continuous seagrass compared to areas of sparse, discontinuous seagrass and provided a suitable spatial representation of seagrass distribution within each study area. This study demonstrates that the same methods can be applied across scenes spanning varying seagrass bioregions, atmospheric conditions, and optical water types, which is a significant step toward developing a consistent, operational approach for mapping seagrass coverage at the national and global scales. Accompanying this manuscript are instructional videos describing the processing workflow, including data acquisition, data processing, and satellite image classification. These instructional videos may serve as a management tool to complement field- and aerial-based mapping efforts for monitoring seagrass ecosystems

    Modeled soil erosion potential is low across California's annual rangelands

    No full text
    We used the Revised Universal Soil Loss Equation (RUSLE) to evaluate how different residual forage dry matter (RDM) levels affect erosion potential in rangelands across California. The model was adapted to operate in a geographic information system (GIS) to model 14.8 million acres (6.0 million hectares) of land. Average erosion potential was low among all RDM scenarios and increased from an estimated 0.05 ton per acre per year (0.11 megagram per hectare per year) with the high RDM scenario to 0.12 ton per acre per year (0.27 megagram per hectare per year) with the low RDM scenario. Considering all RDM scenarios, fewer than 174,733 acres (70,710 hectares, or 1.2% of land) had erosion potential that exceeded soil loss tolerance values. Although achieving a uniform RDM target across a landscape may be an oversimplification of reality, simulations suggest that erosion potential on average is low in California's annual rangelands across high, moderate and low RDM recommendations. Moreover, our findings indicate that grazing management (maintaining moderate or high RDM) to mitigate erosion can be effective when targeted at areas of high vulnerability
    corecore