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Vertical artifacts in high-resolution WorldView-2 and 
WorldView-3 satellite imagery of aquatic systems
Megan M. Coffer a,b, Peter J. Whitman a, Blake A. Schaeffer c, Victoria Hill d, 
Richard C. Zimmerman d, Wilson B. Salls c, Marie C. Lebrasse a,e 

and David D. Graybill a

aORISE Fellow, U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, 
USA; bCenter for Geospatial Analytics, North Carolina State University, Raleigh, NC, USA; cU.S. Environmental 
Protection Agency, Office of Research and Development, Durham, NC, USA; dDepartment of Ocean & Earth 
Sciences, Old Dominion University, Norfolk, VA, USA; eDepartment of Marine, Earth and Atmospheric 
Sciences, North Carolina State University, Raleigh, NC, USA

ABSTRACT
Satellite image artefacts are features that appear in an image but not 
in the original imaged object and can negatively impact the inter-
pretation of satellite data. Vertical artefacts are linear features 
oriented in the along-track direction of an image system and can 
present as either banding or striping; banding are features with 
a consistent width, and striping are features with inconsistent widths. 
This study used high-resolution data from DigitalGlobeʻs (now 
Maxar) WorldView-3 satellite collected at Lake Okeechobee, Florida 
(FL), on 30 August 2017. This study investigated the impact of vertical 
artefacts on both at-sensor radiance and a spectral index for an 
aquatic target as WorldView-3 was primarily designed as a land 
sensor. At-sensor radiance measured by six of WorldView-3ʻs eight 
spectral bands exhibited banding, more specifically referred to as 
non-uniformity, at a width corresponding to the multispectral detec-
tor sub-arrays that comprise the WorldView-3 focal plane. At-sensor 
radiance measured by the remaining two spectral bands, red and 
near-infrared (NIR) #1, exhibited striping. Striping in these spectral 
bands can be attributed to their time delay integration (TDI) settings 
at the time of image acquisition, which were optimized for land. The 
impact of vertical striping on a spectral index leveraging the red, red 
edge, and NIR spectral bands—referred to here as the NIR maximum 
chlorophyll index (MCINIR)—was investigated. Temporally similar ima-
gery from the European Space Agencyʻs Sentinel-3 and Sentinel-2 
satellites were used as baseline references of expected chlorophyll 
values across Lake Okeechobee as neither Sentinel-3 nor Sentinel-2 
imagery showed striping. Striping was highly prominent in the MCINIR 
product generated using WorldView-3 imagery, as noise in the at- 
sensor radiance exceeded any signal of chlorophyll in the image. 
Adjusting the image acquisition parameters for future tasking of 
WorldView-3 or the functionally similar WorldView-2 satellite may 
alleviate these artefacts. To test this, an additional WorldView-3 
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image was acquired at Lake Okeechobee, FL, on 26 May 2021 in 
which the TDI settings and scan line rate were adjusted to improve 
the signal-to-noise ratio. While some evidence of non-uniformity 
remained, striping was no longer noticeable in the MCINIR product. 
Future image tasking over aquatic targets should employ these 
updated image acquisition parameters. Since the red and NIR #1 
spectral bands are critical for inland and coastal water applications, 
archived images not collected using these updated settings may be 
limited in their potential for analysis of aquatic variables that require 
these two spectral bands to derive.

1. Introduction

Satellite remote sensing can provide improved spatial and temporal coverage and resolu-
tion compared to field monitoring (Papenfus et al. 2020; Greb et al. 2018; Palmer, Kutser 
and Hunter 2015). However, satellite image artefacts, defined as features that appear in an 
image but not in the original imaged object, can negatively impact image quality and the 
interpretation of remote sensing data products. Vertical artefacts are linear features 
oriented in the along-track direction of an imaging system and can occur due to 
a variety of factors, including sensor engineering, the imaging process, and the subject 
being imaged. Vertical artefacts can have either a consistent width, defined as banding, or 
inconsistent widths, defined as striping. Banding and striping can produce visually flawed 
imagery, and parameters derived from imagery affected by these artefacts can produce 
erroneous quantitative results. Vertical artefacts are particularly problematic in homoge-
neous regions (e.g., open water, desert, snow, and ice) and in aquatic environments that 
present optically dark targets relative to land (Zhao et al. 2013). Vertical artefacts have 
been documented in imagery from several satellite sensors across varying spatial resolu-
tions, including Aqua and Terraʻs Moderate Resolution Imaging Spectroradiometer at 
250-m to 1-km spatial resolution (Bouali and Ladjal 2011; Rakwatin, Takeuchi and Yasuoka 
2007), Landsat 4-5ʻs Thematic Mapper at 30-m spatial resolution (Helder, Quirk and Hood 
1992; Barker 1984; Metzler and Malila 1985; Nichol and Vohora 2004), Earth Observing-1ʻs 
Hyperion hyperspectral imaging instrument, also at 30-m spatial resolution (Zhao et al. 
2013), and both GeoEye-1 and WorldView-2 at 1.84-m spatial resolution (Dai and Howat 
2018).

Satellite remote sensing has proven to be an effective monitoring tool for aquatic 
systems and has been used to measure various bio-geophysical parameters, including 
water clarity (Zhang et al. 2021; Olmanson, Bauer and Brezonik 2008), chlorophyll- 
a (Odermatt et al. 2012), harmful algal blooms (Hansson and Hakansson 2007; Maguire 
et al. 2016), submerged vegetation (Traganos and Reinartz 2017; Pasqualini et al. 2005), 
bathymetry (Dekker et al. 2011), sediment (Dogliotti et al. 2015), coloured dissolved organic 
matter (Brezonik et al. 2015), and surface oils (De Carolis, Adamo and Pasquariello 2013; 
Kolokoussis and Karathanassi 2018). High spatial resolution sensors are required for satellite 
remote sensing of inland waters (Hestir et al. 2015; Clark et al. 2017; Mouw et al. 2015; Lee 
et al. 2012). Commercial satellite imagery has been encouraged as an option to improve 
spatial resolution in aquatic systems (Schaeffer and Myer 2020; Dekker and Hestir 2012), 
and has been employed in recent studies for aquatic applications (Coffer et al. 2020; Mishra, 
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Stumpf and Meredith 2019; Wang, Gong and Pu 2018; El Saadi, Yousry and Jahin 2014). 
However, an investigation into the radiometric quality of commercial satellite imagery, 
particularly regarding vertical artefacts, is still needed.

To address this paucity in the literature, our study used data from WorldView-3, 
one of DigitalGlobeʻs (now Maxar) commercial satellite platforms, as 
a demonstration, with data from the European Space Agencyʻs (ESA) Copernicus 
Sentinel-3 and Sentinel-2 satellites used as baseline references. At-sensor radiance for 
each of WorldView-3ʻs eight spectral bands was considered as well as a spectral 
index leveraging the red, red edge, and near-infrared (NIR) spectral bands. This 
spectral index is referred to here as the NIR maximum chlorophyll index (MCINIR) to 
emphasize the use of the NIR spectral band rather than the red edge spectral band 
used in the original definition of MCI as WorldView-2 lacks an equivalent spectral 
band (Gower et al. 2005). Chlorophyll is an algal pigment whose abundance is used 
to estimate water quality response to ecosystem stress and to categorize trophic 
state in aquatic environments. While all digital images are subject to some influence 
from vertical artefacts, this analysis aimed to determine if the vertical artefacts 
present in WorldView-3 images prevented realistic characterization of water quality 
parameters. The following research objectives were addressed:

(1) Investigate the sources of vertical artefacts, including both banding and striping, in 
each spectral band of WorldView-3 imagery.

(2) Quantify the influence of vertical artefacts on both at-sensor radiance and satellite- 
derived MCINIR values.

(3) Optimize WorldView-2 and WorldView-3 image acquisition parameters for aquatic 
targets to alleviate vertical artefacts.

2. Materials and methods

2.1. Study site

Lake Okeechobee in Florida (FL; 26.97°N, 80.80°W), USA, is the largest lake in the 
state and the fifth largest lake in the country by surface area, excluding the Great 
Lakes (Figure 1). Lake Okeechobee was chosen for this study because of its large 
surface area, which provided ample opportunity to evaluate pure water pixels. 
Large lakes reduce the potential of stray light contamination from land which can 
negatively impact data quality (Palmer, Kutser and Hunter 2015), a concern for both 
the WorldView-3 imagery and the coarser resolution Sentinel-3 and Sentinel-2 
imagery. Additionally, Lake Okeechobee experiences frequent algal blooms (Rosen 
et al. 2017), which is an important consideration for this study given the use of 
MCINIR, a spectral index that quantifies chlorophyll concentration. Although vertical 
artefacts have been visually confirmed in many WorldView-2 and WorldView-3 
scenes (results not shown), a single-case study using WorldView-3 data at Lake 
Okeechobee was chosen here as a quantitative demonstration.
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2.2. Satellite data

Satellite imagery was acquired from Maxarʻs WorldView-3 satellite, while imagery from 
ESAʻs Sentinel-3 and Sentinel-2 satellites was used as baseline references. Image acquisi-
tion dates for each satellite image are shown in Table 1. A flowchart outlining specific 
image processing steps applied to WorldView-3 (Section 2.2.1), Sentinel-3 (Section 2.2.2), 
and Sentinel-2 (Section 2.2.3) imagery is shown in Figure 2.

2.2.1. WorldView-3
DigitalGlobe launched WorldView-3 in August 2014 (Maxar 2019). WorldView-3 is 
a pushbroom sensor offering multispectral data at 1.24-m spatial resolution at nadir 
and 1.38-m spatial resolution at 20° off-nadir. While vertical artefacts are also present in 
imagery from Maxarʻs WorldView-2 satellite sensor, only WorldView-3 is shown here. Both 

Figure 1. Lake Okeechobee is located in southeastern Florida (26.97°N, 80.80°W), USA, and is the 
largest lake in the state and the fifth largest lake in the country by surface area, excluding the Great 
Lakes.

Table 1. Acquisition dates for images col-
lected from WorldView-3, Sentinel-3, and 
Sentinel-2.

Satellite Image acquisition date

WorldView-3 30 August 2017
26 May 2021

Sentinel-3 31 August 2017
26 May 2021

Sentinel-2 4 August 2017
19 August 2017

13 September 2017
28 September 2017
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the WorldView-2 and the WorldView-3 satellite sensors utilize time delay integration (TDI) 
charge-coupled devices (CCD) for image capture. In TDI line scan imaging, images are 
taken continuously while the sensor moves in a straight line at constant velocity. Light 
from a single target is imaged onto a single pixel, and as the sensor moves, the light read 
for that single pixel is transferred to the pixel below it at the same velocity at which the 

Figure 2. A flowchart outlining specific image processing steps applied to WorldView-3 (Section 2.2.1), 
Sentinel-3 (Section 2.2.2), and Sentinel-2 (Section 2.2.3) imagery. 1Near-infrared (NIR) maximum 
chlorophyll index (MCINIR) 2National Aeronautics and Space Administration (NASA) Ocean Biology 
Processing Group (OBPG) cyanobacteria index product (CI-cyano) retrieved from https://oceancolor. 
gsfc.nasa.gov/projects/cyan/
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sensor is moving. The light captured from the single target is then summed across the 
number of pixels corresponding to the TDI settings for that spectral band, similar to a 
moving window; for a TDI setting of 10, for example, 10 pixels are activated and their 
measured values are summed to generate a single value, which is assigned to a single 
pixel. The scan line rate at the time of image acquisition indicates the number of lines the 
CCD scans per second. TDI CCD’s are commonly used for capturing fast-moving targets in 
low-light conditions because it allows additional incident light to be included in the at- 
sensor radiance measured for each satellite pixel (Chamberlain and Washkurak 1990).

Three basic level 1B WorldView-3 images, collected on 30 August 2017, were obtained 
from DigitalGlobeʻs EnhancedView Web Hosting Service (evwhs.digitalglobe.com). These 
images were selected as they had full coverage of Lake Okeechobee with minimal cloud 
interference. WorldView-3ʻs default image acquisition parameters were used, which are 
optimized for land and included TDI settings for each spectral band ranging from 10 to 24 
and a scan line rate of 20,000 lines per second. Limited processing was applied to 
WorldView-3 data to ensure results presented here characterized the imagery itself and 
not the selected processing regime. Metadata associated with basic level 1B imagery was 
adjusted using updated vicarious calibration factors provided by Kuester (2017). Relative 
radiometric calibration is provided with basic level 1B data, and absolute radiometric 
calibration was performed following Coffer et al. (2020) to convert digital numbers to top- 
of-atmosphere radiance (LTOA) in units of Watts per steradian per square meter 
(Wsr−1m−2). Tiles contained in each of the three scenes were mosaicked together and 
clipped to the boundary of Lake Okeechobee. For comparison to Sentinel-2 imagery, 
MCINIR derived from WorldView-3 imagery was downsampled to match the 20-m spatial 
resolution of Sentinel-2 via bilinear interpolation.

As suggested in Section 3.1, vertical artefacts in the WorldView-3 images collected on 
30 August 2017 could be partly attributed to the use of default image acquisition 
parameters, which are optimized for land. To test if adjusting these acquisition parameters 
alleviated vertical artefacts, an additional WorldView-3 image consisting of a single image 
tile was collected over Lake Okeechobee, FL, on 26 May 2021 using parameters optimized 
for aquatic targets, which involved increasing the TDI rate to 24 for all spectral bands and 
decreasing the scan line rate to 12,000 lines per second. As with the 30 August 2017 data, 
the 26 May 2021 data were obtained as basic level 1B data, relative and absolute radio-
metric calibration were applied, and the image was clipped to the boundary of Lake 
Okeechobee. WorldView-3 image processing was performed in ENVI 8.7.0 and IDL 8.7.2 
(Exelis Visual Information Solutions, Boulder, Colorado). Image mosaicking, clipping, and 
downsampling were performed in ArcGIS Version 10.7.1 (ESRI 2019).

2.2.2. Sentinel-3
While Sentinel-3 imagery has insufficient spatial resolution (300-m at nadir) to directly 
compare to high spatial resolution satellite platforms such as WorldView-3, its frequent 
temporal resolution (near-daily) can allow for contemporaneous data collection. 
Temporally coincident Sentinel-3 imagery was used here to provide information regard-
ing algal blooms in Lake Okeechobee at the time of WorldView-3 image collection. ESA 
launched the Copernicus Sentinel-3A satellite in February 2016 and the Copernicus 
Sentinel-3B satellite in April 2018, hereafter collectively referred to as Sentinel-3. Each 
satellite is equipped with the Ocean and Land Colour Instrument (OLCI). OLCI collects data 
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in multiple spectral bands spanning the red and red edge portions of the electromagnetic 
spectrum, a region crucial for measuring chlorophyll. Here, the cyanobacteria index (CI- 
cyano), which leverages reflectances from OLCI between 620 and 709 nm to estimate 
cyanobacteria abundance (Lunetta et al. 2015; Wynne et al. 2008, 2010), was used as 
evidence of algal blooms across Lake Okeechobee. OLCI imagery was first collected by 
ESA through the Copernicus program and was then processed into CI-cyano by the 
National Aeronautics and Space Administration (NASA) Ocean Biology Processing Group 
(https://oceancolor/gsfc.nasa.gov/projects/cyan/). Two Sentinel-3 images were obtained 
for comparison to WorldView-3 imagery; one was obtained for 31 August 2017, 1 day after 
the 30 August 2017 WorldView-3 image acquisition, and another was obtained for 
26 May 2021, the same day as the 26 May 2021 WorldView-3 image acquisition.

2.2.3. Sentinel-2
Vertical artefacts were investigated in imagery from WorldView-3 while imagery from 
Sentinel-2 was used as a baseline reference. All digital images, including those from 
Sentinel-2, are affected in some way by vertical artefacts (Warren et al. 2019); however, 
previous studies applying spectral indices to Sentinel-2 imagery have demonstrated that 
vertical artefacts did not hinder quantification of water quality parameters (Toming et al. 
2016; Oiry and Barillé 2021) as the error introduced through vertical artefacts did not 
outweigh the signal of the attribute being measured. Thus, Sentinel-2 imagery was used 
as a baseline reference to compare satellite-derived chlorophyll concentrations across 
Lake Okeechobee against results from WorldView-3.

Temporally and spatially coincident scenes between WorldView-3 and Sentinel-2 were 
desired in order to quantify the additional variability introduced as a result of vertical 
artefacts in WorldView-3 imagery. However, there were no Sentinel-2 scenes coincident 
with scenes from WorldView-2 or WorldView-3 due to the infrequent and intermittent 
temporal coverage of commercial satellite imagery. Therefore, Sentinel-2 was used to 
develop a baseline of expected data variability throughout Lake Okeechobee from the 
period around the date of the WorldView-3 image collection. Despite the lack of temporal 
matches between the two datasets, a comparison between WorldView-3 and Sentinel-2 
imagery is still valid as Sentinel-2 imagery can capture the expected natural spatial 
patterns in chlorophyll (Seuront et al. 1996; Mandelbrot 1983) across Lake Okeechobee, 
whereas WorldView-3 imagery contaminated with vertical artefacts will likely not produce 
expected natural spatial patterns. In the absence of field-observed chlorophyll, analyzing 
expected natural spatial patterns can offer insight regarding the reliability of satellite- 
derived MCINIR values. For comparison against either WorldView-2 or WorldView-3 data, 
imagery from Planet Labʻs RapidEye satellite constellation and the joint NASA and United 
States Geological Survey (USGS) Landsat series were also considered. However, no coin-
cident scenes between either WorldView-2 or WorldView-3 and RapidEye were available, 
and Landsat products do not contain the red edge spectral band required to compute 
MCINIR. Thus, Sentinel-2 imagery, despite no temporal overlap, was chosen for 
comparison.

ESA launched the Copernicus Sentinel-2A satellite in June 2015 and the Copernicus 
Sentinel-2B satellite in March 2017, hereafter collectively referred to as Sentinel-2. Each 
satellite is equipped with the MultiSpectral Instrument (MSI), which collects multispectral 
imagery at spatial resolutions of 10, 20, and 60 m at nadir. Sentinel-2 level 1C data were 
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requested as top-of-atmosphere reflectance (RTOA) for the months of August and 
September 2017 as this time period characterized a one-month period before and after 
the WorldView-3 image acquisition. Four Sentinel-2 scenes fit these criteria and were 
selected for analysis. RTOA values were converted to LTOA to match the units of the 
WorldView-3 data. Cloud masking provided with Sentinel-2 imagery was applied, and 
satellite tiles for each unique date were mosaicked together and clipped to the boundary 
of Lake Okeechobee. The red and NIR spectral bands were resampled from their native 
spatial resolution of 10 m to 20 m to match the spatial resolution of the other multi-
spectral band used in the MCINIR calculation. MCINIR was computed as described in 
Section 2.3. MCINIR values derived from each of the four Sentinel-2 images were retained 
for comparison to WorldView-3, and a temporal composite was generated reflecting 
average MCINIR across all four images. Sentinel-2 data processing was performed using 
Google Earth Engine (Gorelick et al. 2017).

2.3. Spectral index

Since vertical artefacts are particularly visible in relatively homogeneous regions, includ-
ing water, a variation on a spectral index commonly used in aquatic environments was 
chosen to assess the influence of vertical artefacts on a derived variable and was adapted 
to the spectral characteristics of the WorldView-3 and Sentinel-2 sensors (Table 2). MCI is 
a line height algorithm originally developed by Gower et al. (2005) for imagery from the 
MEdium Resolution Imaging Spectrometer (MERIS) onboard ESAʻs Envisat satellite. MCI 
leverages three spectral bands to estimate the chlorophyll concentration: two outer 
bands used to establish a baseline and one central band use to measure the peak from 
the baseline. MCI has shown promise when applied to other satellite platforms, including 
for RapidEye (Mishra, Stumpf and Meredith 2019) and Sentinel-2 (Xu et al. 2019; Ansper 
and Alikas 2019; Pirasteh et al. 2020). The WorldView-3 and Sentinel-2 satellites are 
spectrally different from MERIS; however, this study is not intended to validate the MCI 
algorithm originally presented in Gower et al. (2005) for additional satellite platforms, but 
rather to serve as an example of a spectral index using spectral bands relevant for water 
quality monitoring. Here, MCI was modified to meet the spectral characteristics of 
WorldView-3 and Sentinel-2 and is referred to as MCINIR, leveraging radiances in the red 
and NIR spectral bands as the two outer bands in the MCINIR equation, and the red edge 
spectral band as the peak band to estimate the relative chlorophyll abundance 
(Equation 1). MCINIR was retained as a relative index and was not converted to an absolute 
chlorophyll concentration. MCINIR was computed as:

Table 2. WorldView-3 and Sentinel-2 centre wave-
lengths (nm) for the three spectral bands used to 
compute the near-infrared (NIR) maximum chloro-
phyll index (MCINIR) originally defined as MCI by 
Gower et al. (2005).

Spectral band WorldView-3 Sentinel-2

Red 661 665
Red edge 724 704
NIR 832 842
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MCINIR ¼ LTOAðλred edgeÞ � LTOAðλredÞ �
λred edge � λred

λNIR � λred
� LTOAðλNIRÞ � LTOAðλredÞ

� �

(1) 

2.4. Quantifying vertical artefacts in at-sensor radiance

Using a single image tile, at-sensor radiance measured by each of WorldView-3ʻs eight 
spectral bands was first used to characterize the width of vertical artefacts for each 
spectral band. Next, at-sensor radiance values were extracted across a horizontal transect 
to investigate the influence of vertical artefacts on the resulting radiance values. For each 
spectral band, the mean and standard deviation of all data values across the horizontal 
transect were computed. Standard deviations for all eight spectral bands were analysed 
for outliers. Mild and extreme outliers were defined by Barbato et al. (2011) using the 
inner fence and outer fence of the distribution. The inner fence is defined as the first 
quartile minus 1.5 times the interquartile range and the third quartile plus 1.5 times the 
interquartile range. The outer fence is defined as the first quartile minus 3 times the 
interquartile range and the third quartile plus 3 times the interquartile range. A point 
beyond an inner fence on either side is considered a mild outlier, while a point beyond an 
outer fence on either side is considered an extreme outlier.

2.5. Quantifying vertical artefacts in satellite-derived MCINIR values

Vertical and horizontal transects across satellite-derived MCINIR values were compared to 
quantify noise introduced as a result of vertical artefacts. Three vertical and three horizontal 
transects were extracted from satellite-derived MCINIR values in a single WorldView-3 image 
tile. First, the shape of the distribution for each transect was characterized by computing 
excess kurtosis (Chissom 1970). Excess kurtosis describes the tail shape of the data 
distribution. In the event of vertical artefacts, distributions associated with vertical transects 
should be more compact due to the linear nature of the artefacts, while distributions 
associated with horizontal transects should be more dispersed as both light and dark 
biases would be captured in each horizontal transect. Distributions that are more concen-
trated about the mean are described as leptokurtic and generally have a kurtosis value 
above zero. Distributions that are more dispersed about the mean are described as 
platykurtic and generally have a kurtosis value below zero. Excess kurtosis was computed 
using the e1071 package in R Version 4.0.0 (Meyer et al. 2019; R Core Team 2020).

As further evidence of vertical artefacts, the two-sample Kolmogorov–Smirnov test 
was used to quantify if distributions within both vertical and horizontal transects 
were similar. This analysis tested the hypothesis that vertical transects affected by 
banding or striping would have different distributions from one another due to light 
and dark biases across the image, while horizontal transects not affected by banding 
or striping would have similar distributions from one another. The two-sample 
Kolmogorov–Smirnov test is a nonparametric test that is sensitive to differences in 
both location and shape of the empirical cumulative distribution functions of the two 
samples (Kolmogorov 1933; Smirnov 1939). The Kolmogorov–Smirnov test statistic, D, 
is the largest difference between the two cumulative distribution functions and 
ranges from 0 to 1. Generally, values below 0.5 and nearing 0 indicate the two 
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samples were drawn from the same population, suggesting small differences 
between samples. Values above 0.5 and nearing 1 indicate the two samples were 
drawn from different populations, suggesting large differences between samples. 
A p-value is provided with results of the Kolmogorov–Smirnov test, but it is not 
reported here. While p-values are often included because of their familiarity to many 
readers, they provide negligible information on the validity of the reported model 
(Wasserstein, Schirm and Lazar 2019) and can be artificially deflated with large 
sample sizes (Lantz 2013). The Kolmogorov–Smirnov test was applied using 
R Version 4.0.0 (R Core Team 2020).

3. Results

3.1. Sources of vertical artefacts in WorldView-3 imagery

Visual inspection of radiance values for each of WorldView-3ʻs eight spectral bands 
suggests that at least two types of vertical artefacts are occurring in the imagery 
(Figure 3). Consistent, vertical banding appears to contaminate radiance measured by 
all spectral bands, although this artefact is most obvious in the coastal blue, blue, green, 

Figure 3. Radiance measured by each WorldView-3 spectral band for a single tile at Lake Okeechobee, 
Florida, on 30 August 2017. Vertical artefacts called banding appear in all eight spectral bands and 
correspond to the 12 multispectral detector sub-arrays that make up the WorldView-2 and WorldView- 
3 focal planes. Vertical artefacts called striping appear in two of the eight spectral bands. Note: the 
radiance scale is stretched for each individual spectral band to optimize visualization.
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yellow, red edge, and NIR #2 spectral bands. These banding features are approximately 
600 pixels in width, which corresponds to each of the 12 multispectral detector sub-arrays 
that make up the WorldView-2 and WorldView-3 focal planes (Updike and Comp 2010). 
Documentation accompanying WorldView-3 imagery notes that ‘vertical streaksʻ may be 
apparent in the raw imagery resulting from differences in gain or offset values for a single 
detector, which they refer to as non-uniformity (Updike and Comp 2010; Kuester 2017). 
The documentation also notes that these artefacts are minimized after relative radio-
metric correction, which is included in level 1B data. Non-uniformity has been reported in 
other satellite sensors including in imagery from NASA/USGSʻs Landsat 8 (Pahlevan et al. 
2017b), ESAʻs Sentinel-2 mission (Pahlevan et al. 2017a), Maxarʻs WorldView-1 satellite 
(Krause 2008), Planet Labʻs RapidEye satellite constellation (Anderson et al. 2011), and 
more generally for short-wavelength infrared pushbroom hyperspectral sensors (Hu et al. 
2017).

Narrow, inconsistent striping appears in several spectral bands, but most prominently 
in the red and NIR #1, resulting in highly contrasting and unpredictable light and dark 
biases in radiance values. The locations of these light and dark biases are similar across the 
two spectral bands with a wide bright bias in the left half of the tile while the right half of 
the tile is characterized by dark biases. Striping in red and NIR #1 spectral bands can be 
attributed to their TDI settings. Image capture utilizing TDI is ideal for capturing fast- 
moving objects while preserving light sensitivity (Chamberlain and Washkurak 1990) and 
is described in detail in Bodenstorfer et al. (2007). Higher TDI settings are preferred in low- 
light conditions or for low-light targets to allow additional incident light to be included in 
the at-sensor radiance measured for each pixel (El-Desouki and Al-Azem 2014). Due to 
hardware limitations, the WorldView-3 satellite is constructed such that the same TDI 
setting is shared between the coastal blue and NIR #2 spectral bands, the blue and green 
spectral bands, the yellow and red edge spectral bands, and the red and NIR #1 spectral 
bands (Updike and Comp 2010). In the image used here, the TDI setting for the red and 
NIR #1 spectral bands were set to a lower value (TDI = 10) than those of the other three 
pairs (TDI = 24, 14, and 24, respectively). Red through NIR radiances are generally higher 
over most land targets due to higher reflectances from vegetation, so it is reasonable for 
TDI settings to be lower over land for these spectral bands. However, this assumption 
does not hold over aquatic targets as radiance measured over water in near-infrared 
wavelengths is much lower, nearing zero. Thus, the lower TDI setting in the red and NIR #1 
spectral bands likely led to insufficient signal-to-noise ratio (SNR) to capture an optically 
dark target, resulting in arbitrary bright and dark striping across the image. A high SNR is 
essential for measuring constituents in aquatic systems due to the already low signal of 
water; an insufficient SNR can cause variability in the measured constituent to be con-
cealed by noise within the image (Gordon and Clark 1981).

3.2. Effect of vertical artefacts on radiance values

While the coastal blue, blue, green, yellow, red edge, and NIR #2 spectral bands exhibited 
visible light and dark biases in their radiance values as a result of non-uniformity (see 
Figure 3), the extracted data showed little variability in these spectral bands, with 
standard deviations below 0.001 for each spectral band (Figure 4; Table 3). Radiance 
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values for the red and NIR #1 spectral bands, however, were strongly affected by striping 
as shown by high variability in extracted radiance values, particularly values in the NIR #1 
spectral band (Figure 4). Consequently, the standard deviations of radiance values for the 
red and NIR #1 spectral bands were considerably higher than for the other six spectral 
bands. The standard deviation in the red spectral band was two to four times higher than 
those spectral bands impacted only by banding, and for the NIR #1, the standard 

Figure 4. Radiance values extracted for all pixels (n =  12,548) across a horizontal transect for the 
WorldView-3 image tile shown in Figure 3.

Table 3. Average (μ) and standard deviation 
(σ) of radiance values accompanying the spec-
tra extracted from all pixels (n = 12,548) across 
the horizontal transect shown in Figure 4. Mild 
and extreme outliers were defined by Barbato 
et al. (2011).

Spectral band μ σ

Coastal blue 0.1351 0.0009
Blue 0.1007 0.0008
Green 0.0703 0.0008
Yellow 0.0562 0.0005
Red 0.0528 0.0020*
Red edge 0.0351 0.0005
NIR #1 0.0259 0.0048**
NIR #2 0.0106 0.0009

*mild outlier (σ > 0.0014) 
**extreme outlier (σ > 0.0021)
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deviation was five to ten times higher. Based on the definitions of mild and extreme 
outliers presented in Barbato et al. (2011), the red spectral band contains mild outliers 
(σ > 0.0014), and the NIR #1 spectral band contains extreme outliers (σ > 0.0021).

3.3. Effect of vertical artefacts on MCINIR values

Vertical artefacts in WorldView-3ʻs spectral bands resulted in drastically different distribu-
tions of MCINIR values across vertical and horizontal transects (Figure 5). Across vertical 
transects, the distributions were leptokurtic (excess kurtosis spanned 0.02 to 0.17), mean-
ing the data values were more concentrated about the mean. Each of the three vertical 
transects had distributions spanning a small range of MCINIR values (interquartile ranges 
all equalled 0.00065), and none of the interquartile ranges overlapped. The three hor-
izontal transects had distributions that can be described as platykurtic (excess kurtosis 
spanned −0.87 to −0.59), meaning their data values were more dispersed about the mean. 

Figure 5. The near-infrared (NIR) maximum chlorophyll index (MCINIR) for a spatial subset of the image 
tile shown in Figure 3 at Lake Okeechobee, Florida, on 30 August 2017 derived using imagery from 
WorldView-3. Boxplots describing the distribution of MCINIR data values for three vertical transects are 
shown above the raster image and for three horizontal transects to the right of the raster image. Gray 
boxes represents the 25th percentile, median, and 75th percentile; the lower whisker extends to 1.5 
times the interquartile range from the 25th percentile; the top whisker extends to 1.5 times the 
interquartile range from the 75th percentile; black dots represent outliers that fall outside these 
ranges.
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The values within the interquartile ranges for the horizontal transects were much more 
similar (spanning 0.00298 to 0.00561), with each median falling within the interquartile 
ranges of the other two distributions.

Results of the two-sample Kolmogorov–Smirnov test also supported differences in the 
vertical transect distributions and similarities in the horizontal transect distributions (Table 4). 
Between each possible pairing of vertical distributions, the Kolmogorov–Smirnov test statis-
tic indicated a large difference between samples (D = 1.00, 0.99, and 1.00), suggesting 
derived MCINIR values from different vertical transects are not from the same population. 
Between each possible pairing of horizontal distributions, the Kolmogorov–Smirnov test 
statistic indicated a small difference between samples (D = 0.07, 0.37, and 0.34). This offers 
quantitative evidence of the stark contrast in data values imposed by vertical artefacts in the 
imagery, which can cause large variability in derived geophysical variables.

Erroneous MCINIR values derived from WorldView-3 are evident across all of Lake 
Okeechobee, while results derived from Sentinel-2 indicate a much more reasonable 
pattern of data values (Figure 6). Radiance measured from these WorldView-3 and 
Sentinel-2 scenes have not been cross-calibrated, meaning resulting MCINIR values 
derived from each sensor cannot be directly compared (Pancorbo et al. 2021); 
however, visually comparing results between sensors can offer evidence of errors 
introduced as a result of vertical artefacts in WorldView-3 imagery. MCINIR derived 
from WorldView-3 imagery showed sharp changes in data values with vertical bands 
of varying width spanning the entire north–south extent of the lake and extremely 
high MCINIR values in a vertical stripe near the center of the lake (Figure 6(a)). The 
Sentinel-2 composite, however, showed no increased chlorophyll activity in this 
region. Instead, according to the Sentinel-2 composite, chlorophyll was most con-
centrated along the northwestern shore of the lake (Figure 6(d)), an area that had 
very low MCINIR values in the WorldView-3 image. Sentinel-3 imagery taken the day 
after the 30 August 2017 WorldView-3 overpass also suggested an algal bloom was 
present along the northern shore of Lake Okeechobee (Figure 7). A horizontal 
transect across a subset of the lake using WorldView-3 imagery indicated sudden 
variations in MCINIR (Figure 6(c)), while the same transect using both the composite 
Sentinel-2 data and data from the four individual scenes used to create the 

Table 4. Results of the two-sample Kolmogorov–Smirnov 
test for a WorldView-3 image collected at Lake Okeechobee, 
Florida, on 31 August 2017; the sample size for each sample 
was 8477. D is the Kolmogorov–Smirnov test statistic. V1, V2, 
and V3 represent the three vertical transects shown in 
Figure 5, and H1, H2, and H3 represent the three horizontal 
transects.

Sample A Sample B D Difference

V1 V2 1.00 Large
V1 V3 0.99 Large
V2 V3 1.00 Large
H1 H2 0.07 Small
H1 H3 0.37 Small
H2 H3 0.34 Small
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composite showed much more gradual changes across the subset (Figure 6(f)). In the 
WorldView-3 scene, variability in sensor-derived MCINIR was the result of both varia-
bility in the measured geophysical variable itself and artefacts caused by vertical 
striping; however, the influence of each of these factors cannot be directly quantified 
without large-scale field observations.

3.4. Minimizing striping in future image acquisitions

Both WorldView-2 and WorldView-3 were designed primarily as land sensors; thus, the 
default acquisition parameters are optimized for land targets. During future image tasking 
of WorldView-2 or WorldView-3, acquisition settings should be optimized to properly serve 
each specific use case. For aquatic applications, for example, adjusting both TDI settings 
and the scan line rate may help alleviate vertical artefacts, including striping. Increasing the 

Figure 6. (a) The near-infrared (NIR) maximum chlorophyll index (MCINIR) at Lake Okeechobee, Florida, 
from WorldView-3 imagery collected on 30 August 2017 at a spatial resolution of approximately 2 m. 
(b) A spatial subset of (a) resampled to match the 20-m spatial resolution of Sentinel-2. (c) A horizontal 
transect of MCINIR corresponding to the red line in (b). (d) A composite average of MCINIR for Lake 
Okeechobee generated using four Sentinel-2 scenes collected in August and September 2017. (e) 
A spatial subset of (d). (f) A horizontal transect of MCINIR corresponding to the red line in (e), including 
the composite MCINIR values (red line) and the MCINIR values for the four scenes used to generate the 
composite (gray lines). Note: Radiance measured by WorldView-3 and Sentinel-2 have not been cross- 
calibrated; thus, the resulting MCINIR values derived from each sensor cannot be directly compared 
and the extracted data do not use the same quantitative scales.
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TDI settings and decreasing the scan line rate during image acquisition may increase the 
SNR of the data. In WorldView-2 and WorldView-3 products, the maximum available TDI 
setting for multispectral bands is 24 (Updike and Comp 2010), and the minimum potential 
scan line rate is 12,000 lines per second compared to its default value of 20,000.

An additional WorldView-3 image was collected over Lake Okeechobee, FL, on 
26 May 2021 using image acquisition parameters optimized for aquatic targets, and 
MCINIR was computed (Figure 8). Note that the exact same image tile shown in Figure 3 
was not used for comparison due to differences in pixel size and swath width between the 
two scenes as the view angle differed between image acquisitions: the 30 August 2017 
image was collected at a view angle of 19.4° and the 26 May 2021 image was collected at 
a view angle of 37.8°. Both the true colour image and the derived MCINIR product 
indicated a chlorophyll event in the southwestern portion of the image tile. Temporally 
and spatially coincident OLCI imagery also supported the presence of chlorophyll 
(Figure 9). MCINIR derived from the WorldView-3 image collected using acquisition para-
meters optimized for aquatic targets does not appear to be impacted by striping, 
although some evidence of banding remains. Nevertheless, the increased SNR resulting 
from adjusted TDI settings and scan line rate allowed for the signal of the attribute being 
measured, chlorophyll, to outweigh errors introduced through vertical artefacts.

Vertical and horizontal transects were extracted for a subset of the image tile shown in 
Figure 8 (Figure 10). In the absence of striping in the red and NIR #1 spectral bands, values 
extracted along vertical and horizontal transects should have similar distributions unlike 
those shown in Figure 5 For MCINIR derived from the image collected on 26 May 2021. All 

Figure 7. Cyanobacteria abundance estimated from the cyanobacteria index (CI-cyano) for Sentinel-3 
imagery collected at Lake Okeechobee, Florida, on 31 August 2017, one day after a WorldView-3 
image acquisition.
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Figure 8. WorldView-3 (a) true color image and (b) near-infrared (NIR) maximum chlorophyll index 
(MCINIR) for a spatial subset of Lake Okeechobee, Florida, on 26 May 2021.

Figure 9. Cyanobacteria abundance estimated from the cyanobacteria index (CI-cyano) for Sentinel-3 
imagery collected at Lake Okeechobee, Florida, on 26 May 2021, coinciding with a WorldView-3 image 
acquisition.
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vertical and horizontal distributions were leptokurtic (excess kurtosis spanned 0.83 to 
26.57), meaning the data values were more concentrated about the mean. Results of the 
two-sample Kolmogorov–Smirnov test also support more similar distributions for vertical 
and horizontal transect distributions of MCINIR. Between each possible pairing of distribu-
tions, the Kolmogorov–Smirnov test statistic indicated small differences between samples 
(Table 5; D spanned 0.12 to 0.36). Moreover, visual interpretation would suggest that 
these differences are the result of differences in the concentration of chlorophyll rather 
than artificial differences caused by striping.

Figure 10. The near-infrared (NIR) maximum chlorophyll index (MCINIR) for a spatial subset of the 
image tile shown in Figure 3 at Lake Okeechobee, Florida, on 26 May 2021 derived using imagery from 
WorldView-3. Boxplots describing the distribution of MCINIR data values for three vertical transects are 
shown above the raster image and boxplots describing the distribution of MCINIR data values for three 
horizontal transects are shown to the right of the raster image. Gray boxes represents the 25th 

percentile, median, and 75th percentile; the lower whisker extends to 1.5 times the interquartile range 
from the 25th percentile; the top whisker extends to 1.5 times the interquartile range from the 75th 

percentile; black dots represent outliers that fall outside these ranges.

1216 M. M. COFFER ET AL.

0.12 

0.08 

--ml--~ 
--ill--· -.. -. . .. 

0.04 0.08 0.12 



4. Discussion

Field observations would be required to definitively support algal presence; however, 
imagery from both Sentinel-2 and Sentinel-3 suggested algae were present in Lake 
Okeechobee on 31 August 2017, predominately along the northern shore of the lake. 
Consequently, the highest MCINIR values across the scene should highlight pixels that 
contain algae. Instead, the highest and lowest MCINIR values correspond to vertical 
striping across the scene, suggesting the variability in radiance values was higher 
among striping artefacts than it was for the variable being quantified. Additionally, at 
the time of image acquisition (12:22 EDT), winds at the study site were out of the east- 
southeast at around 4 ms−1. Surface waters and their constituents, including cyanobac-
teria, tend to move in the direction of the wind (Wu et al. 2013). Thus, winds out of the 
east-southeast would create a diagonal gradient in the algal filaments present in the 
surface waters at Lake Okeechobee. This should lead to fairly equivalent horizontal and 
vertical variability, but, instead, horizontal gradients show much more variability across 
the image (see Figure 5), suggesting that this variability is due to vertical artefacts in the 
image and not the geophysical variables being estimated. Additionally, the composite 
Sentinel-2 data suggest that the highest chlorophyll values occurred along the north-
west shoreline of Lake Okeechobee, and the Sentinel-3 data suggest that the highest 
chlorophyll values occurred along the northern shore. However, in the WorldView-3 
image, the highest chlorophyll values occur in a vertical stripe near the centre of the 
lake.

Vertical artefacts can also be explained by bright targets within an image if satellite 
pixels become saturated. Two image artefacts involving sensor saturation, namely 
smearing and blooming, have been documented in the literature for satellite imagery 
and were considered here as potential causes of striping in the red and NIR #1 spectral 
bands. Smearing occurs when electrons leak into an area of the vertical transfer 
register, a component of CCD cameras, due to image saturation (Smith et al. 1999). 
These electrons are then transferred downward causing pixels above and below the 
saturated area to contain the excess electrons. Smearing manifests as a bright vertical 
stripe extending above and below the saturated portion of the image. Blooming occurs 
when pixels in the brightest part of the image lose their ability to accommodate 
additional electrons, which causes those electrons to spread into neighbouring pixels 

Table 5. Results of the two-sample Kolmogorov–Smirnov 
test for a WorldView-3 image collected at Lake Okeechobee, 
Florida, on 26 May 2021; the sample size for each sample 
was 9035. D is the Kolmogorov–Smirnov test statistic. V1, V2, 
and V3 represent the three vertical transects shown in 
Figure 10, and H1, H2, and H3 represent the three horizontal 
transects.

Sample A Sample B D Difference

V1 V2 0.33 Small
V1 V3 0.12 Small
V2 V3 0.30 Small
H1 H2 0.30 Small
H1 H3 0.26 Small
H2 H3 0.36 Small
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(Catano 1978). Blooming appears as an isotropic artefact emanating from the saturated 
pixels and is often also accompanied by vertical streaking in the image. Wahballah, 
Bazan and Ibrahim (2018) cited smearing in high-resolution satellites, Elvidge et al. 
(2001) noted blooming in nighttime imagery along coastal areas, and Poli et al. (2015) 
described artefacts similar to blooming from bright targets in GeoEye-1 and 
WorldView-2 images. Two anti-blooming techniques, adding a vertical overflow drain 
(Hamasaki et al. 1988) and a lateral overflow drain (Ando et al. 1991), have been 
effectively used in other imaging platforms. Neither a vertical nor a lateral overflow 
drain was implemented in the WorldView-2 sensor design, but WorldView-3 is 
equipped with a lateral overflow drain (Maxar Technologies Inc., personal communica-
tion, 18 June 2021).

There were several WorldView-3 pixels within the entire image strip that reached 
saturation. These pixels had digital numbers of 2048, which is the maximum possible 
value that can be achieved in an image with 11-bit radiometric resolution like those 
collected by WorldView-3. However, the location of these saturated pixels did not corre-
spond to the striping in the red and NIR #1 spectral bands. In the image strip that includes 
the spatial subset shown in Figure 3, six pixels reached saturation for the red and NIR #1 
spectral bands due to specular reflection from buildings located along the northern shore 
of Lake Okeechobee. Each of the remaining six spectral bands (coastal blue, blue, green, 
yellow, red edge, and NIR #2) also reached saturation for the same pixel locations and for 
additional pixel locations (e.g., cloud cover along the southern shore of Lake 
Okeechobee), but did not show evidence of smearing or blooming. Therefore, sensor 
saturation was likely not the primarily cause of the striping observed in the red and NIR #1 
spectral bands, although it could have contributed.

Striping in the red and NIR #1 spectral bands was likely caused by the TDI settings at 
the time of image acquisition. According to documentation accompanying WorldView-3 
imagery, the TDI settings for each image are selected using a look-up table that 
considers only the solar elevation angle and does not include any target feature 
information such as bright land or dark water, nor does it include a land mask. 
However, Dai and Howat (2018) noted TDI settings in WorldView-2 and WorldView-3 
imagery can pose issues with an improperly defined land mask, as optimal TDI settings 
differ over land and aquatic targets. Dai and Howat (2018) observed vertical artefacts 
caused by image saturation over Arctic regions in high-resolution, commercial satellite 
imagery due to improper TDI settings for the imaged surface. The authors proposed an 
algorithm for the local detection of vertical artefacts in commercial imagery, but this 
approach was insufficient for our imagery since: (1) our vertical artefacts occur over 
optically dark regions rather than optically bright regions, and (2) their algorithm was 
designed to identify banding in the imagery, whereas the focus of this study is primarily 
striping.

Striping in the red and NIR #1 spectral bands was no longer evident after adjusting 
the TDI settings and scan line rate during image capture. It is likely that striping will be 
particularly prevalent in scenes that capture sharp transitions from optically bright 
targets, such as land, to optically dark targets, such as water. Algorithms used to assess 
water quality are typically either empirical or semi-analytical and depend on variations 
in the spectral shape and magnitude of the water-leaving reflectance (Greb et al. 2018). 
Erroneous top-of-atmosphere radiance values can be propagated through image 
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processing, resulting in inaccurate derived inherent optical properties and derived water 
quality parameters. Optimizing these image acquisition parameters for aquatic targets 
increased the SNR and allowed the chlorophyll signal to exceed noise in the image. 
Future tasking of both WorldView-2 and WorldView-3 should specify the maximum TDI 
settings and the minimum scan line rate. Additionally, WorldView-2 can offer slightly 
higher SNR than WorldView-3 due to its coarser spatial resolution at nadir (1.84 m for 
WorldView-2 and 1.24 m for WorldView-3), and therefore, could be more appropriate for 
aquatic applications than WorldView-3. Archived WorldView-2 and WorldView-3 images 
were likely collected using acquisition parameters optimized for land, meaning they 
may be inadequate for aquatic applications that require the red and NIR #1 spectral 
bands.

Vertical artefacts will be particularly problematic when using spectral indices or 
spectral ratios that utilize spectral bands impacted by striping, such as the red and 
NIR #1 spectral bands in this study. For a spectral index such as MCINIR, which utilizes 
both of these spectral bands as well as the red edge spectral band, vertical artefacts 
present in each spectral band were compounded; banding in the red edge spectral 
band and striping in the red and NIR #1 spectral bands resulted in an inconsistent and 
erroneous display of MCINIR values across Lake Okeechobee. Spectral indices that do not 
leverage spectral bands impacted by striping will likely not create such irregular vertical 
artefacts; this is a focus of ongoing research efforts. Using the RapidEye satellite 
constellation, Mishra, Stumpf and Meredith (2019) evaluated MCINIR at Utah Lake, 
Utah, and did not find evidence of striping in the imagery. Moreover, this artefact is 
likely less problematic in image classification than in spectral indices as image classifica-
tion is used to create a categorical product and not a continuous product, thus allowing 
some errors caused by vertical artefacts to be concealed in the final product. Both Islam 
et al. (2020) and Coffer et al. (2020) successfully classified seagrass coverage using 
imagery from WorldView-2 without obvious impacts of vertical artefacts, but additional 
noise in the red and NIR #1 spectral bands could lead to poorer classification accuracies 
as pixels of similar classes can become more difficult to distinguish.

This study presents the first analysis of vertical artefacts in commercial satellite 
imagery for aquatic applications; however, there are several limitations that warrant 
consideration. Field observations were not available for comparison to satellite- 
measured radiance or satellite-derived chlorophyll abundance. Therefore, comparisons 
were made between WorldView-3 and two coarser spatial resolution sensors. 
Comparing sensors that have not been cross-calibrated can introduce additional, 
unquantifiable error that is not accounted for here. Obtaining field observations of 
chlorophyll in order to quantify bias introduced due to vertical artefacts is of interest 
for both WorldView-2 and WorldView-3 imagery. Moreover, while MCI was originally 
developed for the MERIS sensor using spectral bands centred at 681, 709, and 753 nm 
(Gower et al. 2005), this study considered slightly different wavelengths to match the 
spectral characteristics of the WorldView-3 sensor, which may reduce the ability of the 
spectral index to properly characterize chlorophyll abundance. There are also spatial 
and temporal limitations of this study. Only a single WorldView-3 image collected using 
default image acquisition parameters and a single image collected using updated image 
acquisition parameters were considered. Future work will expand this demonstration 
spatially and temporally. And while WorldView-2 was suggested as a potentially more 
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appropriate satellite for aquatic applications due to its coarser spatial resolution and, 
thus, higher SNR, no WorldView-2 images were tested here. Finally, a sensitivity analysis 
could refine the updated image acquisition parameters proposed here; iterating 
through the eight potential TDI rates and scan line rates ranging from 12,000 to 
24,000 in increments of 1,000 (Updike and Comp 2010) could offer insight regarding 
the importance of each parameter on the SNR of each of WorldView-3ʻs eight spectral 
bands. However, radiometric field measurements would be required for each image 
acquisition. To test each combination of TDI rates and scan line rates, a minimum of 104 
scenes (13 unique scan line rate settings multiplied by 8 unique TDI settings) with 
coincident field radiometry would be required, which was beyond the scope of this 
initial study.

5. Conclusions

This study identified vertical artefacts in WorldView-3 imagery collected over an optically 
dark and homogeneous region of water. Banding was present in all eight spectral bands, 
and striping was present in the red and NIR #1 spectral bands. The TDI settings, which 
were optimized for land targets at the time of image acquisition, were found to cause 
striping, which led to an inconsistent and erroneous characterization of chlorophyll across 
Lake Okeechobee. Analyses presented here can be applied to band ratios or other spectral 
indices used for aquatic applications to characterize potential bias introduced in derived 
geophysical variables as a result of vertical artefacts. The red and NIR #1 spectral bands are 
critical for inland and coastal water applications, and striping in these spectral bands can 
hinder the use of WorldView-2 and WorldView-3 imagery in such environments. For 
aquatic applications, future tasking of WorldView-2 and WorldView-3 should specify 
image acquisition parameters suitable for optically dark targets.
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Highlights

● Banding and striping were identified in WorldView-3 imagery of an aquatic system
● Striping caused inconsistent, erroneous values for a derived bio-geophysical variable
● All spectral bands had banding caused by detector sub-array non-uniformity
● The red, NIR #1 spectral bands had striping caused by image acquisition parameters
● Default acquisition parameters are set for land, revising for water eased striping
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